An aromatic epoxy monomer, formed by glycidylation of gallic acid, was crosslinked by adopting different curing agents to obtain bio-based, crosslinked resins with suitable engineering properties. Specifically, tri- and tetra-glycidyl ether of gallic acid (GEGA) were obtained using a two-step synthesis. These bio-based monomers were cured in the following three epoxy formulations: a stiff cycloaliphatic primary amine, isophorone diamine, and a flexible polypropylene oxide amine (Jeffamine D-230). Next, the homopolymerization of GEGA was studied using an ionic initiator, N,N-dimethylbenzylamine, and a complex curing mechanism highlighted by calorimetric and mass spectra analysis. Calorimetric and rheological measurements were used to compare the curing behavior of the studied GEGA-based formulations. Mechanical properties of the gallic acid-based epoxy resins were comparable with those of standard epoxy resin formulations, based on di-glycidyl ether of bisphenol A. Thermogravimetric analysis of cured samples showed a relevant char content at high temperatures.
Synthesis, curing, and properties of an epoxy resin derived from gallic acid
Casiello, MicheleInvestigation
;Annese, CosimoFormal Analysis
;Nacci, AngeloData Curation
;
2018-01-01
Abstract
An aromatic epoxy monomer, formed by glycidylation of gallic acid, was crosslinked by adopting different curing agents to obtain bio-based, crosslinked resins with suitable engineering properties. Specifically, tri- and tetra-glycidyl ether of gallic acid (GEGA) were obtained using a two-step synthesis. These bio-based monomers were cured in the following three epoxy formulations: a stiff cycloaliphatic primary amine, isophorone diamine, and a flexible polypropylene oxide amine (Jeffamine D-230). Next, the homopolymerization of GEGA was studied using an ionic initiator, N,N-dimethylbenzylamine, and a complex curing mechanism highlighted by calorimetric and mass spectra analysis. Calorimetric and rheological measurements were used to compare the curing behavior of the studied GEGA-based formulations. Mechanical properties of the gallic acid-based epoxy resins were comparable with those of standard epoxy resin formulations, based on di-glycidyl ether of bisphenol A. Thermogravimetric analysis of cured samples showed a relevant char content at high temperatures.File | Dimensione | Formato | |
---|---|---|---|
Paper published_BioRes_2018_13_1_632.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.