Abnormal handling of copper is the cause of Wilson disease (WD), a rare disorder typified by increased levels in plasma copper not-bound to ceruloplasmin (nCp-Cu, also known as 'free' copper). In Alzheimer's disease (AD), meta-analyses show that copper decreases in brain but increases in serum, due to the nCp Cu component increase. Despite the similarities, a direct comparison of copper biological status in the two diseases has never been carried out. To fill this gap, we evaluated serum copper, ceruloplasmin, nCp-Cu and Cu:Cp in 385 CE and 336 healthy controls previously investigated that were compared with 9 newly diagnosed WD patients. We then assessed 24h copper urinary excretion in 24 WD patients under D-penicillamine (D-pen) treatment and in 35 healthy controls, and compared results with those of AD patients participating to a D-pen phase II clinical trial previously published. After adjusting for sex and age, serum nCp-Cu and Cu:Cp resulted higher in AD and in WD than in healthy controls (both p<0.001). While nCp-Cu was similar between AD and WD, Cu:Cp was higher in WD (p<0.016). 24h urinary copper excretion in AD patients (12.05μg/day) was higher than in healthy controls (4.82μg/day; p<0.001). 77.8% of the AD patients under D-pen treatment had a 24h urinary excretion higher than 200μg/day, suggestive of a failure of copper control. This study provides new insight into the pathophysiology of copper homeostasis in AD, showing a failure of copper control and the Cu:Cp ratio as an eligible marker.

Copper dyshomeostasis in Wilson disease and Alzheimer's disease as shown by serum and urine copper indicators.

Colabufo, N. A.;
2018-01-01

Abstract

Abnormal handling of copper is the cause of Wilson disease (WD), a rare disorder typified by increased levels in plasma copper not-bound to ceruloplasmin (nCp-Cu, also known as 'free' copper). In Alzheimer's disease (AD), meta-analyses show that copper decreases in brain but increases in serum, due to the nCp Cu component increase. Despite the similarities, a direct comparison of copper biological status in the two diseases has never been carried out. To fill this gap, we evaluated serum copper, ceruloplasmin, nCp-Cu and Cu:Cp in 385 CE and 336 healthy controls previously investigated that were compared with 9 newly diagnosed WD patients. We then assessed 24h copper urinary excretion in 24 WD patients under D-penicillamine (D-pen) treatment and in 35 healthy controls, and compared results with those of AD patients participating to a D-pen phase II clinical trial previously published. After adjusting for sex and age, serum nCp-Cu and Cu:Cp resulted higher in AD and in WD than in healthy controls (both p<0.001). While nCp-Cu was similar between AD and WD, Cu:Cp was higher in WD (p<0.016). 24h urinary copper excretion in AD patients (12.05μg/day) was higher than in healthy controls (4.82μg/day; p<0.001). 77.8% of the AD patients under D-pen treatment had a 24h urinary excretion higher than 200μg/day, suggestive of a failure of copper control. This study provides new insight into the pathophysiology of copper homeostasis in AD, showing a failure of copper control and the Cu:Cp ratio as an eligible marker.
File in questo prodotto:
File Dimensione Formato  
J Trace Elem in Med and Biol.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 515.16 kB
Formato Adobe PDF
515.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
J_TRace_Elem_Med_Biol.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/207564
Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 76
  • ???jsp.display-item.citation.isi??? 73
social impact