A series of microRNAs (miRNAs) have a critical role in many cellular and physiological activities such as cell cycle, growth, proliferation, apoptosis and metabolism. miRNAs are also important in the maintenance of renal homeostasis and kidney diseases. In vitro and in vivo animal models have shown a critical role of miRNAs in the development of diabetic nephropathy (DN) and in the progression of renal fibrosis. Specific miRNAs in renal tissue and peripheral blood mononuclear cells (PBMCs) are up and downregulated in different kidney diseases. They represent new potential biomarkers for diagnosis and targeted therapy. In addition, urinary miRNAs may be considered non-invasive biomarkers for monitoring the progression of renal damage. The activity of miRNAs can be modified by different approaches such as the use of antisense oligonucleotide inhibitors (antagomirs), tandem miRNA-binding site repeats manufactured by Decoy or Sponge technologies and miRNA mimics. The use of miRNA blockers or antagonists as therapeutic agents is very attractive but new information will be necessary considering their role in other systems. © The Author 2013.
MicroRNAs in kidney diseases: New promising biomarkers for diagnosis and monitoring
Schena, F. P.;Serino, G.;Sallustio, F.
2014-01-01
Abstract
A series of microRNAs (miRNAs) have a critical role in many cellular and physiological activities such as cell cycle, growth, proliferation, apoptosis and metabolism. miRNAs are also important in the maintenance of renal homeostasis and kidney diseases. In vitro and in vivo animal models have shown a critical role of miRNAs in the development of diabetic nephropathy (DN) and in the progression of renal fibrosis. Specific miRNAs in renal tissue and peripheral blood mononuclear cells (PBMCs) are up and downregulated in different kidney diseases. They represent new potential biomarkers for diagnosis and targeted therapy. In addition, urinary miRNAs may be considered non-invasive biomarkers for monitoring the progression of renal damage. The activity of miRNAs can be modified by different approaches such as the use of antisense oligonucleotide inhibitors (antagomirs), tandem miRNA-binding site repeats manufactured by Decoy or Sponge technologies and miRNA mimics. The use of miRNA blockers or antagonists as therapeutic agents is very attractive but new information will be necessary considering their role in other systems. © The Author 2013.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.