We consider the magnetic NLS equation where N ≥ 3, 2 < p < 2 * 2N/(N - 2), is a magnetic potential and is a bounded electric potential. We consider a group G of orthogonal transformations of , and we assume that A(gx) = gA(x) and V(gx) = V(x) for any g ∈ G, . Given a group homomorphism into the unit complex numbers, we show the existence of semiclassical solutions to problem (0.1), which satisfy for all g ∈ G, . Moreover, we show that there is a combined effect of the symmetries and the electric potential V on the number of solutions of this type.

Intertwining semiclassical bound states to a nonlinear magnetic Schrödinger equation

Cingolani S
;
2009-01-01

Abstract

We consider the magnetic NLS equation where N ≥ 3, 2 < p < 2 * 2N/(N - 2), is a magnetic potential and is a bounded electric potential. We consider a group G of orthogonal transformations of , and we assume that A(gx) = gA(x) and V(gx) = V(x) for any g ∈ G, . Given a group homomorphism into the unit complex numbers, we show the existence of semiclassical solutions to problem (0.1), which satisfy for all g ∈ G, . Moreover, we show that there is a combined effect of the symmetries and the electric potential V on the number of solutions of this type.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/206252
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 33
social impact