In this paper we deal with critical groups estimates for a functional f:W_0^{1,p}(Ω)→R (p>2), Ω bounded domain of R^N, defined by setting f(u)=1/p∫_Ω|∇u|^p dx +1/2∫_Ω|∇u|^2dx+∫_Ω G(u)dx where G(t)=∫_0^t g(s)ds and g is a smooth real function on R, growing subcritically. We remark that the second derivative of f in each critical point u is not a Fredholm operator from W_0^{1,p}(Ω) to its dual space, so that the generalized Morse splitting lemma does not work. In spite of the lack of a Hilbert structure, we compute the critical groups of f in u via its Morse index.

Critical groups computations on a class of Sobolev Banach spaces via Morse index

Cingolani Silvia
;
2003-01-01

Abstract

In this paper we deal with critical groups estimates for a functional f:W_0^{1,p}(Ω)→R (p>2), Ω bounded domain of R^N, defined by setting f(u)=1/p∫_Ω|∇u|^p dx +1/2∫_Ω|∇u|^2dx+∫_Ω G(u)dx where G(t)=∫_0^t g(s)ds and g is a smooth real function on R, growing subcritically. We remark that the second derivative of f in each critical point u is not a Fredholm operator from W_0^{1,p}(Ω) to its dual space, so that the generalized Morse splitting lemma does not work. In spite of the lack of a Hilbert structure, we compute the critical groups of f in u via its Morse index.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/206246
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 53
social impact