We present critical groups estimates for a functional f defined on the Banach space $W_0^{1,p}(Ω)$, where Ω is a bounded domain in R^N, p>2, associated to a quasilinear elliptic equation involving p-laplacian. In spite of the lack of an Hilbert structure and of Fredholm property of the second order differential of f in each critical point, we compute the critical groups of f in each isolated critical point via Morse index.

Some results on critical groups for a class of functionals defined on Sobolev Banach spaces

Cingolani Silvia;
2001-01-01

Abstract

We present critical groups estimates for a functional f defined on the Banach space $W_0^{1,p}(Ω)$, where Ω is a bounded domain in R^N, p>2, associated to a quasilinear elliptic equation involving p-laplacian. In spite of the lack of an Hilbert structure and of Fredholm property of the second order differential of f in each critical point, we compute the critical groups of f in each isolated critical point via Morse index.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/206221
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact