Hexavalent chromium was stabilized in soil by using a mixture of glass and aluminum recovered from municipal solid wastes under alkaline hydrothermal conditions. Cr(VI) concentration was reduced by 94-98% already after 7 days of treatment. After the same period, more than 90% of total Cr was stabilized in highly recalcitrant and scarcely mobile chemical forms, with 50% in the residual fraction (when the samples were treated at 1/10 w/w mixture/soil ratio). Longer treatments increased Cr stabilization. X-ray microanalyses revealed that Cr was stabilized in geopolymeric structures within large aluminosilicate mineral aggregates (containing both amorphous and crystalline phases). 3D microstructural analyses showed a limited compaction of the soil with still a 20% internal porosity in the neoformed aggregates. Increased pH and salinity after the treatment can be restored by simple soil amendments and washing.

Alkaline hydrothermal stabilization of Cr(VI) in soil using glass and aluminum from recycled municipal solid wastes

Gattullo, Concetta Eliana;D'Alessandro, Caterina;Allegretta, Ignazio;Porfido, Carlo;Spagnuolo, Matteo;Terzano, Roberto
2018-01-01

Abstract

Hexavalent chromium was stabilized in soil by using a mixture of glass and aluminum recovered from municipal solid wastes under alkaline hydrothermal conditions. Cr(VI) concentration was reduced by 94-98% already after 7 days of treatment. After the same period, more than 90% of total Cr was stabilized in highly recalcitrant and scarcely mobile chemical forms, with 50% in the residual fraction (when the samples were treated at 1/10 w/w mixture/soil ratio). Longer treatments increased Cr stabilization. X-ray microanalyses revealed that Cr was stabilized in geopolymeric structures within large aluminosilicate mineral aggregates (containing both amorphous and crystalline phases). 3D microstructural analyses showed a limited compaction of the soil with still a 20% internal porosity in the neoformed aggregates. Increased pH and salinity after the treatment can be restored by simple soil amendments and washing.
File in questo prodotto:
File Dimensione Formato  
Gattullo et al JHAZMAT 2018.pdf

non disponibili

Descrizione: Articolo principale pubblicato
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.56 MB
Formato Adobe PDF
3.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/204333
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact