Background: Everolimus (EVE) is a mammalian target of rapamycin inhibitor (mTOR-I) widely used in transplantation that may determine some severe adverse events, including pulmonary fibrosis. The pathogenic mechanism of mTOR-I-associated pulmonary toxicity is still unclear, but epithelial to mesenchymal transition (EMT) of bronchial/pulmonary cells may play a role. Methods: Three cell lines—human type II pneumocyte-derived A549, normal bronchial epithelial, and bronchial epithelial homozygous for the delta F508 cystic fibrosis-causing mutation—were treated with EVE or tacrolimus at different concentrations. Real-time polymerase chain reaction and immunofluorescence were used to evaluate mRNA and protein levels of EMT markers (alpha-SMA, vimentin, fibronectin). Subsequently, in 13 EVE- and 13 tacrolimus-treated patients we compared the rate of lung fibrosis, estimated by an arbitrary pulmonary fibrosis index score (PFIS). Results: Biomolecular experiments demonstrated that high doses of EVE (100 nM) up-regulated EMT markers in all cell lines at both gene- and protein level. High concentrations of EVE were also able to reduce the mRNA levels of epithelial markers (E-cadherin and ZO-1) and to induce the phosphorylation of AKT. In the in vivo part of the study, PFIS was significantly higher in the EVE-group than the tacrolimus-group (p = 0.03) and correlated with trough levels (R2 = 0.35). Conclusions: Our data reveal, for the first time, a dose-dependent EVE-induced EMT in airway cells. They suggest that clinicians should employ, wherever possible, low dosages of mTOR-Is in transplant recipients, assessing periodically their pulmonary function.

Everolimus-induced epithelial to mesenchymal transition (EMT) in bronchial/pulmonary cells: when the dosage does matter in transplantation

Carratù, Pierluigi;Ventura, Valentina Anna;Resta, Onofrio;
2016-01-01

Abstract

Background: Everolimus (EVE) is a mammalian target of rapamycin inhibitor (mTOR-I) widely used in transplantation that may determine some severe adverse events, including pulmonary fibrosis. The pathogenic mechanism of mTOR-I-associated pulmonary toxicity is still unclear, but epithelial to mesenchymal transition (EMT) of bronchial/pulmonary cells may play a role. Methods: Three cell lines—human type II pneumocyte-derived A549, normal bronchial epithelial, and bronchial epithelial homozygous for the delta F508 cystic fibrosis-causing mutation—were treated with EVE or tacrolimus at different concentrations. Real-time polymerase chain reaction and immunofluorescence were used to evaluate mRNA and protein levels of EMT markers (alpha-SMA, vimentin, fibronectin). Subsequently, in 13 EVE- and 13 tacrolimus-treated patients we compared the rate of lung fibrosis, estimated by an arbitrary pulmonary fibrosis index score (PFIS). Results: Biomolecular experiments demonstrated that high doses of EVE (100 nM) up-regulated EMT markers in all cell lines at both gene- and protein level. High concentrations of EVE were also able to reduce the mRNA levels of epithelial markers (E-cadherin and ZO-1) and to induce the phosphorylation of AKT. In the in vivo part of the study, PFIS was significantly higher in the EVE-group than the tacrolimus-group (p = 0.03) and correlated with trough levels (R2 = 0.35). Conclusions: Our data reveal, for the first time, a dose-dependent EVE-induced EMT in airway cells. They suggest that clinicians should employ, wherever possible, low dosages of mTOR-Is in transplant recipients, assessing periodically their pulmonary function.
File in questo prodotto:
File Dimensione Formato  
Everolimus-induced epithelial.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.31 MB
Formato Adobe PDF
4.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/203863
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact