The purpose of the present work was to see whether changes in rat soleus characteristics due to 3 wk of hindlimb suspension could be modified by ciliary neurotrophic factor (CNTF) treatment. Throughout the tail suspension period, the cytokine was delivered by means of an osmotic pump (flow rate 16 microg. kg(-1). h(-1)) implanted under the hindlimb skin. In contrast to extensor digitorum longus, CNTF treatment was able to reduce unweighting-induced atrophy in the soleus. Twitch and 146 mM potassium (K) tensions, measured in small bundles of unloaded soleus, decreased by 48 and 40%, respectively. Moreover, the time to peak tension and the time constant of relaxation of the twitch were 48 and 54% faster, respectively, in unloaded soleus than in normal muscle. On the contrary, twitch and 146 mM K contracture generated in CNTF-treated unloaded and normal soleus were not different. CNTF receptor-alpha mRNA expression increased in extensor digitorum longus and soleus unloaded nontreated muscles but was similar in CNTF-treated unloaded muscles. The present results demonstrate that exogenously provided CNTF could prevent functional changes occurring in soleus innervated muscle subject to unweighting.

Ciliary neurotrophic factor prevents unweighting-induced functional changes in rat soleus muscle

CONTE, Diana;
2000-01-01

Abstract

The purpose of the present work was to see whether changes in rat soleus characteristics due to 3 wk of hindlimb suspension could be modified by ciliary neurotrophic factor (CNTF) treatment. Throughout the tail suspension period, the cytokine was delivered by means of an osmotic pump (flow rate 16 microg. kg(-1). h(-1)) implanted under the hindlimb skin. In contrast to extensor digitorum longus, CNTF treatment was able to reduce unweighting-induced atrophy in the soleus. Twitch and 146 mM potassium (K) tensions, measured in small bundles of unloaded soleus, decreased by 48 and 40%, respectively. Moreover, the time to peak tension and the time constant of relaxation of the twitch were 48 and 54% faster, respectively, in unloaded soleus than in normal muscle. On the contrary, twitch and 146 mM K contracture generated in CNTF-treated unloaded and normal soleus were not different. CNTF receptor-alpha mRNA expression increased in extensor digitorum longus and soleus unloaded nontreated muscles but was similar in CNTF-treated unloaded muscles. The present results demonstrate that exogenously provided CNTF could prevent functional changes occurring in soleus innervated muscle subject to unweighting.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/2035
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 30
  • ???jsp.display-item.citation.isi??? ND
social impact