Neuroinflammation is the earliest stage of several neurological and neurodegenerative diseases. In the case of neurodegenerative disorders, it takes place about 15â 20 years before the appearance of specific neurodegenerative clinical symptoms. Constitutive microglial COX-1 is one of the pro-inflammatory players of the neuroinflammation. Novel compounds 3, 14 and 15 (Galmof0, Galmof5and Galmof11, respectively) were projected, and their synthetic methodologies developed, by linking by an ester bond, directly or through a C5 or C11 unit linker the highly selective COX-1 inhibitor mofezolac (COXs selectivity index > 6000) to galactose in order to obtain substances capable to cross blood-brain barrier (BBB) and control the CNS inflammatory response. 3, 14 and 15 (Galmofs) were prepared in good to fair yields. Galmof0(3) was found to be a selective COX-1 inhibitor (COX-1 IC50= 0.27 μM and COX-2 IC50= 3.1 μM, selectivity index = 11.5), chemically and metabolically stable, and capable to cross Caco-2 cell monolayer, resembling BBB, probing that its transport is GLUT-1-mediated. Furthermore, Galmof0(3) powerfully inhibits PGE2release higher than mofezolac (1) in LPS-stimulated mouse BV2 microglial cell line, a worldwide recognized neuroinflammation model. In addition, Fingerprints for Ligands and Proteins (FLAP) was used to explain the different binding interactions of Galmofs with the COX-1 active site.

Effect of mofezolac-galactose distance in conjugates targeting cyclooxygenase (COX)-1 and CNS GLUT-1 carrier

PERRONE, MARIA GRAZIA;VITALE, PAOLA;FERORELLI, Savina;BOCCARELLI, Angelina;COLUCCIA, Mauro;PANNUNZIO, Alessandra;SCILIMATI, Antonio
2017-01-01

Abstract

Neuroinflammation is the earliest stage of several neurological and neurodegenerative diseases. In the case of neurodegenerative disorders, it takes place about 15â 20 years before the appearance of specific neurodegenerative clinical symptoms. Constitutive microglial COX-1 is one of the pro-inflammatory players of the neuroinflammation. Novel compounds 3, 14 and 15 (Galmof0, Galmof5and Galmof11, respectively) were projected, and their synthetic methodologies developed, by linking by an ester bond, directly or through a C5 or C11 unit linker the highly selective COX-1 inhibitor mofezolac (COXs selectivity index > 6000) to galactose in order to obtain substances capable to cross blood-brain barrier (BBB) and control the CNS inflammatory response. 3, 14 and 15 (Galmofs) were prepared in good to fair yields. Galmof0(3) was found to be a selective COX-1 inhibitor (COX-1 IC50= 0.27 μM and COX-2 IC50= 3.1 μM, selectivity index = 11.5), chemically and metabolically stable, and capable to cross Caco-2 cell monolayer, resembling BBB, probing that its transport is GLUT-1-mediated. Furthermore, Galmof0(3) powerfully inhibits PGE2release higher than mofezolac (1) in LPS-stimulated mouse BV2 microglial cell line, a worldwide recognized neuroinflammation model. In addition, Fingerprints for Ligands and Proteins (FLAP) was used to explain the different binding interactions of Galmofs with the COX-1 active site.
File in questo prodotto:
File Dimensione Formato  
European Journal of Medicinal Chemistry 141 (2017) 404-416.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.23 MB
Formato Adobe PDF
2.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Perrone et al. European Journal of Medicinal Chemistry, 2017-Iris.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/201673
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact