Angiogenesis is a complex biological process that plays a central role in progression of tumor growth and metastasis. It led to a search for antiangiogenic molecules, and to design antiangiogenic strategies for cancer treatment. Noninvasive molecular imaging, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT), could be useful for lesion detection, to select patients likely to respond to antiangiogenic therapies, to confirm successful targeting, and dose optimization. Additionally, nuclear imaging techniques could also aid in the development of new angiogenesis-targeted drugs and their validation. Angiogenesis imaging can be categorized as targeted at three major cell types: (I) non-endothelial cell targets, (II) endothelial cell targets, and (III) extracellular matrix proteins and matrix proteases. Even if radiopharmaceuticals studying the metabolism and hypoxia can be also used for the study of angiogenesis, many of the agents used in nuclear imaging for this purpose are yet to be investigated. The purpose of this review is to describe the role of molecular imaging in tumor angiogenesis, highlighting the advances in this field.

Multimodality Imaging in Tumor Angiogenesis: Present Status and Perspectives

NICCOLI ASABELLA, ARTOR;DI PALO, ALESSANDRA;ALTINI, CORINNA;FERRARI, CRISTINA;RUBINI, Giuseppe
2017-01-01

Abstract

Angiogenesis is a complex biological process that plays a central role in progression of tumor growth and metastasis. It led to a search for antiangiogenic molecules, and to design antiangiogenic strategies for cancer treatment. Noninvasive molecular imaging, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT), could be useful for lesion detection, to select patients likely to respond to antiangiogenic therapies, to confirm successful targeting, and dose optimization. Additionally, nuclear imaging techniques could also aid in the development of new angiogenesis-targeted drugs and their validation. Angiogenesis imaging can be categorized as targeted at three major cell types: (I) non-endothelial cell targets, (II) endothelial cell targets, and (III) extracellular matrix proteins and matrix proteases. Even if radiopharmaceuticals studying the metabolism and hypoxia can be also used for the study of angiogenesis, many of the agents used in nuclear imaging for this purpose are yet to be investigated. The purpose of this review is to describe the role of molecular imaging in tumor angiogenesis, highlighting the advances in this field.
File in questo prodotto:
File Dimensione Formato  
43. 2017 IJMS Neoangiogenesis.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/199088
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 29
social impact