In this paper we show some symmetry properties of Lyapunov exponents of a dynamical system when the linearized problem evolves on a quadratic group, (XHX)-H-T=H, with H orthogonal. It is well understood that in this case the exponents are symmetric with respect to the origin. Here, we give lower bounds on the number of Lyapunov exponents which are 0 and show that some Lyapunov exponents may have even multiplicity.

Lyapunov exponents of systems evolving on quadratic groups

LOPEZ, Luciano
2003

Abstract

In this paper we show some symmetry properties of Lyapunov exponents of a dynamical system when the linearized problem evolves on a quadratic group, (XHX)-H-T=H, with H orthogonal. It is well understood that in this case the exponents are symmetric with respect to the origin. Here, we give lower bounds on the number of Lyapunov exponents which are 0 and show that some Lyapunov exponents may have even multiplicity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/1960
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact