The purpose of this work was to probe the rate and mechanism of rapid decarboxylation of pyruvic acid in the presence of hydrogen peroxide (H2O2) to acetic acid and carbon dioxide over the pH range 2-9 at 25°C, utilizing UV spectrophotometry, high performance liquid chromatography (HPLC), and proton and carbon nuclear magnetic resonance spectrometry (1H, 13C-NMR). Changes in UV absorbance at 220 nm were used to determine the kinetics as the reaction was too fast to follow by HPLC or NMR in much of the pH range. The rate constants for the reaction were determined in the presence of molar excess of H2O2 resulting in pseudo first-order kinetics. No buffer catalysis was observed. The calculated second-order rate constants for the reaction followed a sigmoidal shape with pH-independent regions below pH 3 and above pH 7 but increased between pH 4 and 6. Between pH 4 and 9, the results were in agreement with a change from rate-determining nucleophilic attack of the deprotonated peroxide species, HOO-, on the α-carbonyl group followed by rapid decarboxylation at pH values below 6 to rate-determining decarboxylation above pH 7. The addition of H2O2 to ethyl pyruvate was also characterized.
Mechanism of Decarboxylation of Pyruvic Acid in the Presence of Hydrogen Peroxide
LOPALCO, ANTONIO;
2016-01-01
Abstract
The purpose of this work was to probe the rate and mechanism of rapid decarboxylation of pyruvic acid in the presence of hydrogen peroxide (H2O2) to acetic acid and carbon dioxide over the pH range 2-9 at 25°C, utilizing UV spectrophotometry, high performance liquid chromatography (HPLC), and proton and carbon nuclear magnetic resonance spectrometry (1H, 13C-NMR). Changes in UV absorbance at 220 nm were used to determine the kinetics as the reaction was too fast to follow by HPLC or NMR in much of the pH range. The rate constants for the reaction were determined in the presence of molar excess of H2O2 resulting in pseudo first-order kinetics. No buffer catalysis was observed. The calculated second-order rate constants for the reaction followed a sigmoidal shape with pH-independent regions below pH 3 and above pH 7 but increased between pH 4 and 6. Between pH 4 and 9, the results were in agreement with a change from rate-determining nucleophilic attack of the deprotonated peroxide species, HOO-, on the α-carbonyl group followed by rapid decarboxylation at pH values below 6 to rate-determining decarboxylation above pH 7. The addition of H2O2 to ethyl pyruvate was also characterized.File | Dimensione | Formato | |
---|---|---|---|
Mechanism of decarboxylation of pyruvic acid in the presence of hydrogen peroxide (3).pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.39 MB
Formato
Adobe PDF
|
1.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.