We review here three main (first-order) mechanisms of stress variation able to influence the triggering of volcanic eruptions and the possible impact on eruption dynamics. They are short- and long-term unloading, seismic energy effects, and changes in far field stress due to geodynamic processes. We present an equilibrium equation for rupture of magma chamber and opening of a dyke up to the surface, taking into account the contribution of each mechanism within the equation. The equation considers the effect of possible superimposition of the three mechanisms with internal processes to the magmatic system, and it is also used for discussing the possible influence on eruption dynamics. The different possible contribution to the eruption triggering are discussed for each mechanism, highlighting how, in many cases, a single mechanism alone is not sufficient for driving eruptive activity if the magmatic system is not close to eruptive conditions.
Influence of Stress Field Changes on Eruption Initiation and Dynamics: A Review
SULPIZIO, ROBERTO;MASSARO, SILVIA
2017-01-01
Abstract
We review here three main (first-order) mechanisms of stress variation able to influence the triggering of volcanic eruptions and the possible impact on eruption dynamics. They are short- and long-term unloading, seismic energy effects, and changes in far field stress due to geodynamic processes. We present an equilibrium equation for rupture of magma chamber and opening of a dyke up to the surface, taking into account the contribution of each mechanism within the equation. The equation considers the effect of possible superimposition of the three mechanisms with internal processes to the magmatic system, and it is also used for discussing the possible influence on eruption dynamics. The different possible contribution to the eruption triggering are discussed for each mechanism, highlighting how, in many cases, a single mechanism alone is not sufficient for driving eruptive activity if the magmatic system is not close to eruptive conditions.File | Dimensione | Formato | |
---|---|---|---|
Sulpizio and Massaro, 2017.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.88 MB
Formato
Adobe PDF
|
1.88 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.