One of the most widely cited advantages of laser-induced breakdown spectroscopy (LIBS) is that it does not require sample preparation, but this may also be the biggest factor holding it back from becoming a mature analytical technique like LA-ICP-MS, ICP-OES, or XRF. While there are certain specimen types that have enjoyed excellent LIBS results without any sample treatment (mostly homogeneous solids such as metals, glass, and polymers), the possible applications of LIBS have been greatly expanded through the use of sample preparation techniques that have resulted in analytical performance (i.e., limits of detection, accuracy, and repeatability) on par with XRF, ICP-OES, and often ICP-MS. This review highlights the work of many LIBS researchers who have developed, adapted, and improved upon sample preparation techniques for various specimen types in order to improve the quality of the analytical data that LIBS can produce in a large number of research domains. Strategies, not only for solids, but also liquids, gases, and aerosols are discussed, including newly developed nanoparticle enhancement and biological imaging and tagging techniques.

Sample treatment and preparation for laser-induced breakdown spectroscopy

DE GIACOMO, ALESSANDRO
2016-01-01

Abstract

One of the most widely cited advantages of laser-induced breakdown spectroscopy (LIBS) is that it does not require sample preparation, but this may also be the biggest factor holding it back from becoming a mature analytical technique like LA-ICP-MS, ICP-OES, or XRF. While there are certain specimen types that have enjoyed excellent LIBS results without any sample treatment (mostly homogeneous solids such as metals, glass, and polymers), the possible applications of LIBS have been greatly expanded through the use of sample preparation techniques that have resulted in analytical performance (i.e., limits of detection, accuracy, and repeatability) on par with XRF, ICP-OES, and often ICP-MS. This review highlights the work of many LIBS researchers who have developed, adapted, and improved upon sample preparation techniques for various specimen types in order to improve the quality of the analytical data that LIBS can produce in a large number of research domains. Strategies, not only for solids, but also liquids, gases, and aerosols are discussed, including newly developed nanoparticle enhancement and biological imaging and tagging techniques.
File in questo prodotto:
File Dimensione Formato  
review_sarah.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2016_SAB_PREPRINT.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/188095
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 173
  • ???jsp.display-item.citation.isi??? 157
social impact