In this paper, nanoparticle enhanced laser-induced breakdown spectroscopy (NELIBS) was applied to the elemental chemical analysis of microdrops of solutions with analyte concentration at subppm level. The effect on laser ablation of the strong local enhancement of the electromagnetic field allows enhancing the optical emission signal up to more than 1 order of magnitude, enabling LIBS to quantify ppb concentration and notably decreasing the limit of detection (LOD) of the technique. At optimized conditions, it was demonstrated that NELIBS can reach an absolute LOD of few picograms for Pb and 0.2 pg for Ag. The effect of field enhancement in NELIBS was tested on biological solutions such as protein solutions and human serum, in order to improve the sensitivity of LIBS with samples where the formation and excitation of the plasma are not as efficient as with metals. Even in these difficult cases, a significant improvement with respect to conventional LIBS was observed.

Nanoparticle Enhanced Laser-Induced Breakdown Spectroscopy for Microdrop Analysis at subppm Level

DE GIACOMO, ALESSANDRO
;
KORAL, CAN;VALENZA, GABRIELE;GAUDIUSO, ROSALBA;
2016-01-01

Abstract

In this paper, nanoparticle enhanced laser-induced breakdown spectroscopy (NELIBS) was applied to the elemental chemical analysis of microdrops of solutions with analyte concentration at subppm level. The effect on laser ablation of the strong local enhancement of the electromagnetic field allows enhancing the optical emission signal up to more than 1 order of magnitude, enabling LIBS to quantify ppb concentration and notably decreasing the limit of detection (LOD) of the technique. At optimized conditions, it was demonstrated that NELIBS can reach an absolute LOD of few picograms for Pb and 0.2 pg for Ag. The effect of field enhancement in NELIBS was tested on biological solutions such as protein solutions and human serum, in order to improve the sensitivity of LIBS with samples where the formation and excitation of the plasma are not as efficient as with metals. Even in these difficult cases, a significant improvement with respect to conventional LIBS was observed.
File in questo prodotto:
File Dimensione Formato  
NELIBS solution.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2016_analchem_accepted.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 5.29 MB
Formato Adobe PDF
5.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/188094
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 125
  • ???jsp.display-item.citation.isi??? 111
social impact