The Data Mining OPtimization Ontology (DMOP) has been developed to support informed decision-making at various choice points of the data mining process. The ontology can be used by data miners and deployed in ontology-driven information systems. The primary purpose for which DMOP has been developed is the automation of algorithm and model selection through semantic meta-mining that makes use of an ontology-based meta-analysis of complete data mining processes in view of extracting patterns associated with mining performance. To this end, DMOP contains detailed descriptions of data mining tasks (e.g., learning, feature selection), data, algorithms, hypotheses such as mined models or patterns, and workflows. A development methodology was used for DMOP, including items such as competency questions and foundational ontology reuse. Several non-trivial modeling problems were encountered and due to the complexity of the data mining details, the ontology requires the use of the OWL 2 DL profile. DMOP was successfully evaluated for semantic meta-mining and used in constructing the Intelligent Discovery Assistant, deployed at the popular data mining environment RapidMiner.

The Data Mining OPtimization Ontology

D'AMATO, CLAUDIA;
2015-01-01

Abstract

The Data Mining OPtimization Ontology (DMOP) has been developed to support informed decision-making at various choice points of the data mining process. The ontology can be used by data miners and deployed in ontology-driven information systems. The primary purpose for which DMOP has been developed is the automation of algorithm and model selection through semantic meta-mining that makes use of an ontology-based meta-analysis of complete data mining processes in view of extracting patterns associated with mining performance. To this end, DMOP contains detailed descriptions of data mining tasks (e.g., learning, feature selection), data, algorithms, hypotheses such as mined models or patterns, and workflows. A development methodology was used for DMOP, including items such as competency questions and foundational ontology reuse. Several non-trivial modeling problems were encountered and due to the complexity of the data mining details, the ontology requires the use of the OWL 2 DL profile. DMOP was successfully evaluated for semantic meta-mining and used in constructing the Intelligent Discovery Assistant, deployed at the popular data mining environment RapidMiner.
File in questo prodotto:
File Dimensione Formato  
The Data Mining.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
pre print - DOI KeetEtAl-JWS2015-DataMiningOptOntologuy.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 609.51 kB
Formato Adobe PDF
609.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/187803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 51
social impact