The PAMELA detector was launched on June 15 th of 2006 on board the Russian Resurs-DK1 satellite and during ten years of continuous data-taking it has observed very interesting features in cosmic rays, especially in the fluxes of protons, helium and electrons. Moreover, PAMELA measurements of cosmic antiproton and positron fluxes and positron-to-all-electron ratio have set strong constraints to the nature of Dark Matter. Measurements of boron, carbon, lithium and beryllium (together with the isotopic fraction) have also shed new light on the elemental composition of the cosmic radiation. Search for signatures of more exotic processes (such as the ones involving Strange Quark Matter) has also been pursued. Furthermore, over the years the instrument has allowed a constant monitoring of the solar activity and a prolonged study of the solar modulation, improving the comprehension of the heliosphere mechanisms. PAMELA has also measured the radiation environment around the Earth, and detected for the first time the presence of an antiproton radiation belt surrounding our planet. In this highlight paper PAMELA main results will be reviewed.

The PAMELA experiment: A decade of Cosmic Ray Physics in space

BELLOTTI, Roberto;BRUNO, ALESSANDRO;
2017-01-01

Abstract

The PAMELA detector was launched on June 15 th of 2006 on board the Russian Resurs-DK1 satellite and during ten years of continuous data-taking it has observed very interesting features in cosmic rays, especially in the fluxes of protons, helium and electrons. Moreover, PAMELA measurements of cosmic antiproton and positron fluxes and positron-to-all-electron ratio have set strong constraints to the nature of Dark Matter. Measurements of boron, carbon, lithium and beryllium (together with the isotopic fraction) have also shed new light on the elemental composition of the cosmic radiation. Search for signatures of more exotic processes (such as the ones involving Strange Quark Matter) has also been pursued. Furthermore, over the years the instrument has allowed a constant monitoring of the solar activity and a prolonged study of the solar modulation, improving the comprehension of the heliosphere mechanisms. PAMELA has also measured the radiation environment around the Earth, and detected for the first time the presence of an antiproton radiation belt surrounding our planet. In this highlight paper PAMELA main results will be reviewed.
File in questo prodotto:
File Dimensione Formato  
Galper_2017_J.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/187772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact