The production of electrons from heavy-flavour hadron decays was measured as a function of transverse momentum (pT) in minimum-bias p-Pb collisions at sNN=5.02 TeV using the ALICE detector at the LHC. The measurement covers the pT interval 0.5<12 GeV/c and the rapidity range -1.065<0.135 in the centre-of-mass reference frame. The contribution of electrons from background sources was subtracted using an invariant mass approach. The nuclear modification factor RpPb was calculated by comparing the pT-differential invariant cross section in p-Pb collisions to a pp reference at the same centre-of-mass energy, which was obtained by interpolating measurements at s=2.76 TeV and s=7 TeV. The RpPb is consistent with unity within uncertainties of about 25%, which become larger for pT below 1 GeV/c. The measurement shows that heavy-flavour production is consistent with binary scaling, so that a suppression in the high-pT yield in Pb-Pb collisions has to be attributed to effects induced by the hot medium produced in the final state. The data in p-Pb collisions are described by recent model calculations that include cold nuclear matter effects.

Measurement of electrons from heavy-flavour hadron decays in p-Pb collisions at √sNN=5.02TeV

DI BARI, Domenico;FIORE, Enrichetta Maria;MASTROSERIO, ANNALISA;VOLPE, GIACOMO;
2016-01-01

Abstract

The production of electrons from heavy-flavour hadron decays was measured as a function of transverse momentum (pT) in minimum-bias p-Pb collisions at sNN=5.02 TeV using the ALICE detector at the LHC. The measurement covers the pT interval 0.5<12 GeV/c and the rapidity range -1.065<0.135 in the centre-of-mass reference frame. The contribution of electrons from background sources was subtracted using an invariant mass approach. The nuclear modification factor RpPb was calculated by comparing the pT-differential invariant cross section in p-Pb collisions to a pp reference at the same centre-of-mass energy, which was obtained by interpolating measurements at s=2.76 TeV and s=7 TeV. The RpPb is consistent with unity within uncertainties of about 25%, which become larger for pT below 1 GeV/c. The measurement shows that heavy-flavour production is consistent with binary scaling, so that a suppression in the high-pT yield in Pb-Pb collisions has to be attributed to effects induced by the hot medium produced in the final state. The data in p-Pb collisions are described by recent model calculations that include cold nuclear matter effects.
File in questo prodotto:
File Dimensione Formato  
28 - 1-s2.0-S0370269315010151-main.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/187133
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 41
social impact