A gallium-modified chitosan/poly(acrylic acid) bilayer was obtained by electrochemical techniques on titanium to reduce orthopaedic and/or dental implants failure. The bilayer in vitro antibacterial properties and biocompatibility were evaluated against Escherichia coli and Pseudomonas aeruginosa and on MG63 osteoblast-like cells, respectively. Gallium loading into the bilayer was carefully tuned by the electrochemical deposition time to ensure the best balance between antibacterial activity and cytocompatibility. The 30 min deposition time was able to reduce in vitro the viable cell counts of E. coli and P. aeruginosa of 2 and 3 log cfu/sheet, respectively. Our results evidenced that the developed antibacterial coating did not considerably alter the mechanical flexural properties of titanium substrates and, in addition, influenced positively MG63 adhesion and proliferation. Therefore, the gallium-modified chitosan/poly(acrylic acid) bilayer can be exploited as a promising titanium coating to limit bacterial adhesion and proliferation, while maintaining osseointegrative potential.
Gallium-modified chitosan/poly(acrylic acid) bilayer coatings for improved titanium implant performances
BONIFACIO, MARIA ADDOLORATA;DE GIGLIO, Elvira
2017-01-01
Abstract
A gallium-modified chitosan/poly(acrylic acid) bilayer was obtained by electrochemical techniques on titanium to reduce orthopaedic and/or dental implants failure. The bilayer in vitro antibacterial properties and biocompatibility were evaluated against Escherichia coli and Pseudomonas aeruginosa and on MG63 osteoblast-like cells, respectively. Gallium loading into the bilayer was carefully tuned by the electrochemical deposition time to ensure the best balance between antibacterial activity and cytocompatibility. The 30 min deposition time was able to reduce in vitro the viable cell counts of E. coli and P. aeruginosa of 2 and 3 log cfu/sheet, respectively. Our results evidenced that the developed antibacterial coating did not considerably alter the mechanical flexural properties of titanium substrates and, in addition, influenced positively MG63 adhesion and proliferation. Therefore, the gallium-modified chitosan/poly(acrylic acid) bilayer can be exploited as a promising titanium coating to limit bacterial adhesion and proliferation, while maintaining osseointegrative potential.File | Dimensione | Formato | |
---|---|---|---|
2017_Carb Pol Gallium.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.89 MB
Formato
Adobe PDF
|
2.89 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Gallium_Carb Pol_accman.pdf
accesso aperto
Descrizione: versione accettata per la pubblicazione
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.