Fumonisin B1 (FB1) is among the most common mycotoxins found in maize kernels and maize products worldwide. The microbiological process of detoxification and transformation of toxic organic pollutants is a promising method for foodstuffs decontamination. Some basidiomycetes, such as the Pleurotus eryngii species complex, include several important commercial edible varieties that can detoxify polycyclic organic compounds and a range of wastes and pollutants. We investigated the potential role of P. eryngii, one of the most consumed mushrooms, in the decontamination of FB1 in maize. In addition, selected antioxidant enzymes, (soluble peroxidase (POD), catalase (CAT) and ascorbate peroxidase), primarily involved in control of cell hydrogen peroxide levels, and lignin degradation, were analyzed, to evaluate their contributions to the molecular mechanisms of FB1 by P. eryngii. FB1 decontamination by P. eryngii and involvement of CAT and POD enzymes in the control of toxic decontamination levels of H2O2 were demonstrated. A consistent reduction of FB1 was observed at different incubation times. The average decrease levels of FB1, with respect to the control cultures, ranged from 45 to 61% (RSD < 15%). This study is a possible eco-friendly approach to reducing this mycotoxin in the feed supply chains.

Decontamination of Fumonisin B1 in maize grain by Pleurotus eryngii and antioxidant enzymes

DIPIERRO, NUNZIO;PACIOLLA, Costantino
2017-01-01

Abstract

Fumonisin B1 (FB1) is among the most common mycotoxins found in maize kernels and maize products worldwide. The microbiological process of detoxification and transformation of toxic organic pollutants is a promising method for foodstuffs decontamination. Some basidiomycetes, such as the Pleurotus eryngii species complex, include several important commercial edible varieties that can detoxify polycyclic organic compounds and a range of wastes and pollutants. We investigated the potential role of P. eryngii, one of the most consumed mushrooms, in the decontamination of FB1 in maize. In addition, selected antioxidant enzymes, (soluble peroxidase (POD), catalase (CAT) and ascorbate peroxidase), primarily involved in control of cell hydrogen peroxide levels, and lignin degradation, were analyzed, to evaluate their contributions to the molecular mechanisms of FB1 by P. eryngii. FB1 decontamination by P. eryngii and involvement of CAT and POD enzymes in the control of toxic decontamination levels of H2O2 were demonstrated. A consistent reduction of FB1 was observed at different incubation times. The average decrease levels of FB1, with respect to the control cultures, ranged from 45 to 61% (RSD < 15%). This study is a possible eco-friendly approach to reducing this mycotoxin in the feed supply chains.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/186476
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact