Renal diets for advanced chronic kidney disease (CKD) are structured to achieve a lower protein, phosphate and sodium intake, while supplying adequate energy. The aim of this nutritional intervention is to prevent or correct signs, symptoms and complications of renal insufficiency, delaying the start of dialysis and preserving nutritional status. This paper focuses on three additional aspects of renal diets that can play an important role in the management of CKD patients: the vitamin K1 and fiber content, and the alkalizing potential. We examined the energy and nutrients composition of four types of renal diets according to their protein content: normal diet (ND, 0.8 g protein/kg body weight (bw)), low protein diet (LPD, 0.6 g protein/kg bw), vegan diet (VD, 0.7 g protein/kg bw), very low protein diet (VLPD, 0.3 g protein/kg bw). Fiber content is much higher in the VD and in the VLPD than in the ND or LPD. Vitamin K1 content seems to follow the same trend, but vitamin K2 content, which could not be investigated, might have a different pattern. The net endogenous acid production (NEAP) value decreases from the ND and LPD to the vegetarian diets, namely VD and VLPD; the same finding occurred for the potential renal acid load (PRAL). In conclusion, renal diets may provide additional benefits, and this is the case of vegetarian diets. Namely, VD and VLPD also provide high amounts of fibers and Vitamin K1, with a very low acid load. These features may have favorable effects on Vitamin K1 status, intestinal microbiota and acid-base balance. Hence, we can speculate as to the potential beneficial effects on vascular calcification and bone disease, on protein metabolism, on colonic environment and circulating levels of microbial-derived uremic toxins. In the case of vegetarian diets, attention must be paid to serum potassium levels.

Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake

GESUALDO, Loreto;COSOLA, CARMELA;
2017-01-01

Abstract

Renal diets for advanced chronic kidney disease (CKD) are structured to achieve a lower protein, phosphate and sodium intake, while supplying adequate energy. The aim of this nutritional intervention is to prevent or correct signs, symptoms and complications of renal insufficiency, delaying the start of dialysis and preserving nutritional status. This paper focuses on three additional aspects of renal diets that can play an important role in the management of CKD patients: the vitamin K1 and fiber content, and the alkalizing potential. We examined the energy and nutrients composition of four types of renal diets according to their protein content: normal diet (ND, 0.8 g protein/kg body weight (bw)), low protein diet (LPD, 0.6 g protein/kg bw), vegan diet (VD, 0.7 g protein/kg bw), very low protein diet (VLPD, 0.3 g protein/kg bw). Fiber content is much higher in the VD and in the VLPD than in the ND or LPD. Vitamin K1 content seems to follow the same trend, but vitamin K2 content, which could not be investigated, might have a different pattern. The net endogenous acid production (NEAP) value decreases from the ND and LPD to the vegetarian diets, namely VD and VLPD; the same finding occurred for the potential renal acid load (PRAL). In conclusion, renal diets may provide additional benefits, and this is the case of vegetarian diets. Namely, VD and VLPD also provide high amounts of fibers and Vitamin K1, with a very low acid load. These features may have favorable effects on Vitamin K1 status, intestinal microbiota and acid-base balance. Hence, we can speculate as to the potential beneficial effects on vascular calcification and bone disease, on protein metabolism, on colonic environment and circulating levels of microbial-derived uremic toxins. In the case of vegetarian diets, attention must be paid to serum potassium levels.
File in questo prodotto:
File Dimensione Formato  
2017_cupisti_nutrients.pdf

accesso aperto

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 728.51 kB
Formato Adobe PDF
728.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/185642
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 52
social impact