We developed a simple and cheap assay for quantitatively detecting ochratoxin A (OTA) in wine. A DNA aptamer available in literature was used as recognition probe in its molecular beacon form, i.e., with a fluorescence-quenching pair at the stem ends. Our aptabeacon could adopt a conformation allowing OTA binding, causing a fluorescence rise due to the increased distance between fluorophore and quencher. We used real-time PCR equipment for capturing the signal. With this assay, under optimized conditions, the entire process can be completed within 1 h. In addition, the proposed system exhibited a good selectivity for OTA against other mycotoxins (ochratoxin B and aflatoxin M1) and limited interference from aflatoxin B1 and patulin. A wide linear detection range (0.2–2000 μM) was achieved, with LOD = 13 nM, r = 0.9952, and R2 = 0.9904. The aptabeacon was also applied to detect OTA in red wine spiked with the same dilution series. A linear correlation with a LOD = 19 nM, r = 0.9843, and R2 = 0.9708 was observed, with recoveries in the range 63%–105%. Intra- and inter-day assays confirmed its reproducibility. The proposed biosensor, although still being finalized, might significantly facilitate the quantitative detection of OTA in wine samples, thus improving their quality control from a food safety perspective.
Detection of ochratoxin a using molecular beacons and real-time PCR thermal cycler
SANZANI, SIMONA MARIANNA;IPPOLITO, Antonio
2015-01-01
Abstract
We developed a simple and cheap assay for quantitatively detecting ochratoxin A (OTA) in wine. A DNA aptamer available in literature was used as recognition probe in its molecular beacon form, i.e., with a fluorescence-quenching pair at the stem ends. Our aptabeacon could adopt a conformation allowing OTA binding, causing a fluorescence rise due to the increased distance between fluorophore and quencher. We used real-time PCR equipment for capturing the signal. With this assay, under optimized conditions, the entire process can be completed within 1 h. In addition, the proposed system exhibited a good selectivity for OTA against other mycotoxins (ochratoxin B and aflatoxin M1) and limited interference from aflatoxin B1 and patulin. A wide linear detection range (0.2–2000 μM) was achieved, with LOD = 13 nM, r = 0.9952, and R2 = 0.9904. The aptabeacon was also applied to detect OTA in red wine spiked with the same dilution series. A linear correlation with a LOD = 19 nM, r = 0.9843, and R2 = 0.9708 was observed, with recoveries in the range 63%–105%. Intra- and inter-day assays confirmed its reproducibility. The proposed biosensor, although still being finalized, might significantly facilitate the quantitative detection of OTA in wine samples, thus improving their quality control from a food safety perspective.File | Dimensione | Formato | |
---|---|---|---|
Detection of Ochratoxin a Using Molecular Beacons.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
492.23 kB
Formato
Adobe PDF
|
492.23 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.