Objectives Novel treatments for pancreatic ductal adenocarcinoma (PDAC) are severely needed. The aim of this work was to explore the roles of H+-lactate monocarboxylate transporters 1 and 4 (MCT1 and MCT4) in PDAC cell migration and invasiveness. Methods Monocarboxylate transporter expression, localization, activity, and function were explored in human PDAC cells (MIAPaCa-2, Panc-1, BxPC-3, AsPC-1) and normal human pancreatic ductal epithelial (HPDE) cells, by quantitative polymerase chain reaction, immunoblotting, immunocytochemistry, lactate flux, migration, and invasion assays. Results MCT1 and MCT4 (messenger RNA, protein) were robustly expressed in all PDAC lines, localizing to the plasma membrane. Lactate influx capacity was highest in AsPC-1 cells and lowest in HPDE cells and was inhibited by the MCT inhibitor α-cyano-4-hydroxycinnamate (4-CIN), MCT1/MCT2 inhibitor AR-C155858, or knockdown of MCT1 or MCT4. PDAC cell migration was largely unaffected by MCT1/MCT2 inhibition or MCT1 knockdown but was reduced by 4-CIN and by MCT4 knockdown (BxPC-3). Invasion measured in Boyden chamber (BxPC-3, Panc-1) and spheroid outgrowth (BxPC-3) assays was attenuated by 4-CIN and AR-C155858 and by MCT1 or MCT4 knockdown. Conclusions Human PDAC cells exhibit robust MCT1 and MCT4 expression and partially MCT1- and MCT4-dependent lactate flux. PDAC cell migration is partially dependent on MCT4; and invasion, on MCT1 and MCT4. Inhibition of MCT1 and MCT4 may have clinical relevance in PDAC.

Monocarboxylate Transporters MCT1 and MCT4 Regulate Migration and Invasion of Pancreatic Ductal Adenocarcinoma Cells

RESHKIN, Stephan Joel;
2016-01-01

Abstract

Objectives Novel treatments for pancreatic ductal adenocarcinoma (PDAC) are severely needed. The aim of this work was to explore the roles of H+-lactate monocarboxylate transporters 1 and 4 (MCT1 and MCT4) in PDAC cell migration and invasiveness. Methods Monocarboxylate transporter expression, localization, activity, and function were explored in human PDAC cells (MIAPaCa-2, Panc-1, BxPC-3, AsPC-1) and normal human pancreatic ductal epithelial (HPDE) cells, by quantitative polymerase chain reaction, immunoblotting, immunocytochemistry, lactate flux, migration, and invasion assays. Results MCT1 and MCT4 (messenger RNA, protein) were robustly expressed in all PDAC lines, localizing to the plasma membrane. Lactate influx capacity was highest in AsPC-1 cells and lowest in HPDE cells and was inhibited by the MCT inhibitor α-cyano-4-hydroxycinnamate (4-CIN), MCT1/MCT2 inhibitor AR-C155858, or knockdown of MCT1 or MCT4. PDAC cell migration was largely unaffected by MCT1/MCT2 inhibition or MCT1 knockdown but was reduced by 4-CIN and by MCT4 knockdown (BxPC-3). Invasion measured in Boyden chamber (BxPC-3, Panc-1) and spheroid outgrowth (BxPC-3) assays was attenuated by 4-CIN and AR-C155858 and by MCT1 or MCT4 knockdown. Conclusions Human PDAC cells exhibit robust MCT1 and MCT4 expression and partially MCT1- and MCT4-dependent lactate flux. PDAC cell migration is partially dependent on MCT4; and invasion, on MCT1 and MCT4. Inhibition of MCT1 and MCT4 may have clinical relevance in PDAC.
File in questo prodotto:
File Dimensione Formato  
2016 Kong PANCREAS-full link KP.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.7 MB
Formato Adobe PDF
5.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/184775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 60
social impact