Data stream mining refers to methods able to mine continuously arriving and evolving data sequences or even large scale static databases. Mining data streams has attracted much attention recently. Many data stream classification methods are supervised, hence they require labeled samples that are more difficult and expensive to obtain than unlabeled ones. This paper proposes an incremental semi-supervised clustering approach for data stream classification. Preliminary experimental results on the benchmark data set KDD-CUP’99 show the effectiveness of the proposed algorithm.

Classification of data streams by incremental semi-supervised fuzzy clustering

CASTELLANO, GIOVANNA;FANELLI, Anna Maria
2017-01-01

Abstract

Data stream mining refers to methods able to mine continuously arriving and evolving data sequences or even large scale static databases. Mining data streams has attracted much attention recently. Many data stream classification methods are supervised, hence they require labeled samples that are more difficult and expensive to obtain than unlabeled ones. This paper proposes an incremental semi-supervised clustering approach for data stream classification. Preliminary experimental results on the benchmark data set KDD-CUP’99 show the effectiveness of the proposed algorithm.
2017
978-3-319-52961-5
978-3-319-52962-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/184579
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 4
social impact