In this study, adsorption and biodegradation were exploited sequentially to remove the herbicide fenuron, the insecticide carbaryl and the estrogens 17β-estradiol (E2) and 4-tert-octylphenol (OP) from a municipal landfill leachate (MuLL). In the first step, we used spent coffee grounds, almond shells, a biochar and potato dextrose agar to adsorb the compounds spiked in MuLL at a concentration of 1 mg L−1. After only 3 days, any adsorbent removed from MuLL the totality of E2 and OP, averagely more than 95 % of carbaryl and 62 % of fenuron (81 % after 7 days). In the second step, the adsorbents collected from MuLL after 7 days were inoculated with the fungi Bjerkandera adusta and Irpex lacteus, separately. After 7 days, the maximum degradation occurred for OP in any treatment being averagely 78 and 74 % using B. adusta and I. lacteus, respectively. After 15 days, the average percentages of fenuron, carbaryl, E2 and OP degraded were, respectively, 75, 76, 88 and 88 % using B. adusta, and 74, 79, 85 and 89 % using I. lacteus. Residual estrogenicity in the adsorbents, tested with the recombinant yeast assay, was strictly related to residual E2, thus indicating a negligible contribution from the other contaminants and/or degradation products. The 7-day treatment of MuLL with the adsorbents caused a significant abatement of MuLL phytotoxicity on flax (2.5 times seedling elongation with coffee grounds, compared to MuLL) and a huge stimulation of rapeseed respect to water (biomass almost doubled), thus suggesting a possible worthwhile recycling of this wastewater in agriculture.

A Two-Step Approach to Eliminate Pesticides and Estrogens from a Wastewater and Reduce Its Phytotoxicity: Adsorption onto Plant-Derived Materials and Fungal Degradation

LOFFREDO, Elisabetta;CASTELLANA, GIANCARLO;TASKIN, EREN
2016-01-01

Abstract

In this study, adsorption and biodegradation were exploited sequentially to remove the herbicide fenuron, the insecticide carbaryl and the estrogens 17β-estradiol (E2) and 4-tert-octylphenol (OP) from a municipal landfill leachate (MuLL). In the first step, we used spent coffee grounds, almond shells, a biochar and potato dextrose agar to adsorb the compounds spiked in MuLL at a concentration of 1 mg L−1. After only 3 days, any adsorbent removed from MuLL the totality of E2 and OP, averagely more than 95 % of carbaryl and 62 % of fenuron (81 % after 7 days). In the second step, the adsorbents collected from MuLL after 7 days were inoculated with the fungi Bjerkandera adusta and Irpex lacteus, separately. After 7 days, the maximum degradation occurred for OP in any treatment being averagely 78 and 74 % using B. adusta and I. lacteus, respectively. After 15 days, the average percentages of fenuron, carbaryl, E2 and OP degraded were, respectively, 75, 76, 88 and 88 % using B. adusta, and 74, 79, 85 and 89 % using I. lacteus. Residual estrogenicity in the adsorbents, tested with the recombinant yeast assay, was strictly related to residual E2, thus indicating a negligible contribution from the other contaminants and/or degradation products. The 7-day treatment of MuLL with the adsorbents caused a significant abatement of MuLL phytotoxicity on flax (2.5 times seedling elongation with coffee grounds, compared to MuLL) and a huge stimulation of rapeseed respect to water (biomass almost doubled), thus suggesting a possible worthwhile recycling of this wastewater in agriculture.
File in questo prodotto:
File Dimensione Formato  
Water Air Soil Pollution 2016 - J2.pdf

non disponibili

Descrizione: Articolo pubblicato
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/184373
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact