To improve the knowledge of the shallowest subsurface of Campi Flegrei caldera, a 3-D P wave attenuation tomography of the area was performed. We analyzed about 18,000 active seismic traces, which provided a data set of 11,873 Δt* measurements, e.g., the differential travel times to quality factor ratios. These were inverted through an adapted tomographic inversion procedure. The 3-D tomographic images reveal an average QP about 70, interpreted as water-saturated volcanic and marine sediments. An arc-like, low-QP structure at 0.5–1 km depths was interpreted as a densely fractured, fluid-saturated rock volume, well matching the buried rim of Campi Flegrei caldera. The spatial distribution of high- and low-QP bodies in the inner caldera is correlated with low-Vp values and may reflect either the differences in the percentage of fluid saturation of sediments or the presence of vapor state fluids beneath fumarole manifestations.

A three-dimensional QP imaging of the shallowest subsurface of Campi Flegrei offshore caldera, southern Italy

DE LORENZO, SALVATORE;
2016-01-01

Abstract

To improve the knowledge of the shallowest subsurface of Campi Flegrei caldera, a 3-D P wave attenuation tomography of the area was performed. We analyzed about 18,000 active seismic traces, which provided a data set of 11,873 Δt* measurements, e.g., the differential travel times to quality factor ratios. These were inverted through an adapted tomographic inversion procedure. The 3-D tomographic images reveal an average QP about 70, interpreted as water-saturated volcanic and marine sediments. An arc-like, low-QP structure at 0.5–1 km depths was interpreted as a densely fractured, fluid-saturated rock volume, well matching the buried rim of Campi Flegrei caldera. The spatial distribution of high- and low-QP bodies in the inner caldera is correlated with low-Vp values and may reflect either the differences in the percentage of fluid saturation of sediments or the presence of vapor state fluids beneath fumarole manifestations.
File in questo prodotto:
File Dimensione Formato  
serlenga.pdf

non disponibili

Descrizione: articolo
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/184009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact