We study Liouville theorems for problems of the form divL (A (x, u, ∇L u)) + V(x)|u|p−2 u = a(x)|u|q−1 u on RN in the framework of Carnot groups. Here A is a vector-valued function satisfying Carathéodory condition and ∇L denotes an horizontal gradient, V is a given singular potential, a is a measurable scalar function and q > p − 1. Particular emphasis is given to the case when V is a Hardy or Gagliardo–Nirenberg potential. The results are new even in the canonical Euclidean setting.

Quasilinear elliptic equations with critical potentials

D'AMBROSIO, Lorenzo;
2017-01-01

Abstract

We study Liouville theorems for problems of the form divL (A (x, u, ∇L u)) + V(x)|u|p−2 u = a(x)|u|q−1 u on RN in the framework of Carnot groups. Here A is a vector-valued function satisfying Carathéodory condition and ∇L denotes an horizontal gradient, V is a given singular potential, a is a measurable scalar function and q > p − 1. Particular emphasis is given to the case when V is a Hardy or Gagliardo–Nirenberg potential. The results are new even in the canonical Euclidean setting.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/183989
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact