Background: It is not well known what is the main mechanism causing lung heterogeneity in healthy lungs under mechanical ventilation. We aimed to investigate the mechanisms causing heterogeneity of regional ventilation and parenchymal densities in healthy lungs under anesthesia and mechanical ventilation. Methods: In a small animal model, synchrotron imaging was used to measure lung aeration and regional-specific ventilation (sV̇). Heterogeneity of ventilation was calculated as the coefficient of variation in sV̇ (CVsV̇). The coefficient of variation in lung densities (CVD) was calculated for all lung tissue, and within hyperinflated, normally and poorly aerated areas. Three conditions were studied: zero end-expiratory pressure (ZEEP) and FIO2 0.21; ZEEP and FIO2 1.0; PEEP 12 cmH2O and FIO21.0 (Open Lung-PEEP = OLP). Results: The mean tissue density at OLP was lower than ZEEP-1.0 and ZEEP-0.21. There were larger subregions with low sV̇ and poor aeration at ZEEP-0.21 than at OLP: 12.9 ± 9.0 vs. 0.6 ± 0.4% in the non-dependent level, and 17.5 ± 8.2 vs. 0.4 ± 0.1% in the dependent one (P = 0.041). The CVsV̇ of the total imaged lung at PEEP 12 cmH2O was significantly lower than on ZEEP, regardless of FIO2, indicating more heterogeneity of ventilation during ZEEP (0.23 ± 0.03 vs. 0.54 ± 0.37, P = 0.049). CVD changed over the different mechanical ventilation settings (P = 0.011); predominantly, CVD increased during ZEEP. The spatial distribution of the CVD calculated for the poorly aerated density category changed with the mechanical ventilation settings, increasing in the dependent level during ZEEP. Conclusion: ZEEP together with low FIO2 promoted heterogeneity of ventilation and lung tissue densities, fostering a greater amount of airway closure and ventilation inhomogeneities in poorly aerated regions.

Zero expiratory pressure and low oxygen concentration promote heterogeneity of regional ventilation and lung densities

PERCHIAZZI, Gaetano;
2016-01-01

Abstract

Background: It is not well known what is the main mechanism causing lung heterogeneity in healthy lungs under mechanical ventilation. We aimed to investigate the mechanisms causing heterogeneity of regional ventilation and parenchymal densities in healthy lungs under anesthesia and mechanical ventilation. Methods: In a small animal model, synchrotron imaging was used to measure lung aeration and regional-specific ventilation (sV̇). Heterogeneity of ventilation was calculated as the coefficient of variation in sV̇ (CVsV̇). The coefficient of variation in lung densities (CVD) was calculated for all lung tissue, and within hyperinflated, normally and poorly aerated areas. Three conditions were studied: zero end-expiratory pressure (ZEEP) and FIO2 0.21; ZEEP and FIO2 1.0; PEEP 12 cmH2O and FIO21.0 (Open Lung-PEEP = OLP). Results: The mean tissue density at OLP was lower than ZEEP-1.0 and ZEEP-0.21. There were larger subregions with low sV̇ and poor aeration at ZEEP-0.21 than at OLP: 12.9 ± 9.0 vs. 0.6 ± 0.4% in the non-dependent level, and 17.5 ± 8.2 vs. 0.4 ± 0.1% in the dependent one (P = 0.041). The CVsV̇ of the total imaged lung at PEEP 12 cmH2O was significantly lower than on ZEEP, regardless of FIO2, indicating more heterogeneity of ventilation during ZEEP (0.23 ± 0.03 vs. 0.54 ± 0.37, P = 0.049). CVD changed over the different mechanical ventilation settings (P = 0.011); predominantly, CVD increased during ZEEP. The spatial distribution of the CVD calculated for the poorly aerated density category changed with the mechanical ventilation settings, increasing in the dependent level during ZEEP. Conclusion: ZEEP together with low FIO2 promoted heterogeneity of ventilation and lung tissue densities, fostering a greater amount of airway closure and ventilation inhomogeneities in poorly aerated regions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/183412
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact