Robustness measures the performance of estimation methods when they work under non-ideal conditions. We compared the robustness of artificial neural networks (ANNs) and multilinear fitting (MLF) methods in estimating respiratory system compliance (CRS) during mechanical ventilation (MV). Twenty-four anaesthetized pigs underwent MV. Airway pressure, flow and volume were recorded at fixed intervals after the induction of acute lung injury. After consecutive mechanical breaths, an inspiratory pause (BIP) was applied in order to calculate CRS using the interrupter technique. From the breath preceding the BIP, ANN and MLF had to compute CRS in the presence of two types of perturbations: transient sensor disconnection (TD) and random noise (RN). Performance of the two methods was assessed according to Bland and Altman. The ANN presented a higher bias and scatter than MLF during the application of RN, except when RN was lower than 2% of peak airway pressure. During TD, MLF algorithm showed a higher bias and scatter than ANN. After the application of RN, ANN and MLF maintain a stable performance, although MLF shows better results. ANNs have a more stable performance and yield a more robust estimation of CRS than MLF in conditions of transient sensor disconnection.

Robustness of two different methods of monitoring respiratory system compliance during mechanical ventilation

PERCHIAZZI, Gaetano;
2017-01-01

Abstract

Robustness measures the performance of estimation methods when they work under non-ideal conditions. We compared the robustness of artificial neural networks (ANNs) and multilinear fitting (MLF) methods in estimating respiratory system compliance (CRS) during mechanical ventilation (MV). Twenty-four anaesthetized pigs underwent MV. Airway pressure, flow and volume were recorded at fixed intervals after the induction of acute lung injury. After consecutive mechanical breaths, an inspiratory pause (BIP) was applied in order to calculate CRS using the interrupter technique. From the breath preceding the BIP, ANN and MLF had to compute CRS in the presence of two types of perturbations: transient sensor disconnection (TD) and random noise (RN). Performance of the two methods was assessed according to Bland and Altman. The ANN presented a higher bias and scatter than MLF during the application of RN, except when RN was lower than 2% of peak airway pressure. During TD, MLF algorithm showed a higher bias and scatter than ANN. After the application of RN, ANN and MLF maintain a stable performance, although MLF shows better results. ANNs have a more stable performance and yield a more robust estimation of CRS than MLF in conditions of transient sensor disconnection.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/183408
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact