The membrane pathway of the rapid fluxes of water by which microorganisms adapt promptly to abrupt changes in environmental osmolality have begun to be understood since the discovery of the Escherichia coli aquaporin-Z water channel, AqpZ. As in animals and plants, aquaporins are variously represented among microorganisms, in which 31 homologous genes have already been identified in eubacteria, Archaea, fungi and protozoa. The AqpZ channel is selectively permeable to water, although other functions are not excluded. Consistent with a conservation over the course of evolution, AqpZ and AQP1, a human counterpart, share similar structures. The aqpZ gene is growth phase and osmotically regulated. AqpZ has a role in both the short- and the long-term osmoregulatory response and is required by rapidly growing cells. AqpZ-like proteins seem to be necessary for the virulence expressed by some pathogenic bacteria. Microbial aquaporins are also likely to be involved in spore formation and/or germination. Additional roles may still be unknown. The use of AqpZ as a model system will continue to provide insight into the understanding of the importance of aquaporins.

The Escherichia coli Aquaporin-Z water channel

CALAMITA, Giuseppe
2000

Abstract

The membrane pathway of the rapid fluxes of water by which microorganisms adapt promptly to abrupt changes in environmental osmolality have begun to be understood since the discovery of the Escherichia coli aquaporin-Z water channel, AqpZ. As in animals and plants, aquaporins are variously represented among microorganisms, in which 31 homologous genes have already been identified in eubacteria, Archaea, fungi and protozoa. The AqpZ channel is selectively permeable to water, although other functions are not excluded. Consistent with a conservation over the course of evolution, AqpZ and AQP1, a human counterpart, share similar structures. The aqpZ gene is growth phase and osmotically regulated. AqpZ has a role in both the short- and the long-term osmoregulatory response and is required by rapidly growing cells. AqpZ-like proteins seem to be necessary for the virulence expressed by some pathogenic bacteria. Microbial aquaporins are also likely to be involved in spore formation and/or germination. Additional roles may still be unknown. The use of AqpZ as a model system will continue to provide insight into the understanding of the importance of aquaporins.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/1827
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 80
social impact