In this contribution, we report the first successful baker's yeast reduction of arylpropanones using deep eutectic solvents (DESs) as biodegradable and non-hazardous co-solvents. The nature of DES [e.g. choline chloride/glycerol (2:1)] and the percentage of water in the mixture proved to be critical for both the reversal of selectivity and to achieve high enantioselectivity on going from pure water (up to 98:2 er in favour of the S-enantiomer) to DES/aqueous mixtures (up to 98:2 er in favour of the R-enantiomer). As a result, both enantiomers of valuable chiral alcohols of pharmaceutical interest were prepared from the same biocatalyst by simply switching the solvent. The possible inhibition of some (S)-oxidoreductases making part of the genome of such a wild-type whole cell biocatalyst when DESs are used as co-solvents may pave the way for an anti-Prelog reduction. The scope and limitations of this kind of biotransformations for a range of aryl-containing ketones are also discussed.

Unveiling the Hidden Performance of Whole Cells in the Asymmetric Bioreduction of Aryl-containing Ketones in Aqueous Deep Eutectic Solvents

VITALE, PAOLA
;
PERNA, FILIPPO;Salomone, Antonio;CAPRIATI, Vito
2017

Abstract

In this contribution, we report the first successful baker's yeast reduction of arylpropanones using deep eutectic solvents (DESs) as biodegradable and non-hazardous co-solvents. The nature of DES [e.g. choline chloride/glycerol (2:1)] and the percentage of water in the mixture proved to be critical for both the reversal of selectivity and to achieve high enantioselectivity on going from pure water (up to 98:2 er in favour of the S-enantiomer) to DES/aqueous mixtures (up to 98:2 er in favour of the R-enantiomer). As a result, both enantiomers of valuable chiral alcohols of pharmaceutical interest were prepared from the same biocatalyst by simply switching the solvent. The possible inhibition of some (S)-oxidoreductases making part of the genome of such a wild-type whole cell biocatalyst when DESs are used as co-solvents may pave the way for an anti-Prelog reduction. The scope and limitations of this kind of biotransformations for a range of aryl-containing ketones are also discussed.
File in questo prodotto:
File Dimensione Formato  
Vitale_et_al-2017-Advanced_Synthesis_&_Catalysis.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
C-2017_ASC_biocatalysis_finale.pdf

accesso aperto

Descrizione: Articolo post print accesso pubblico
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 3.9 MB
Formato Adobe PDF
3.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/182521
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 58
social impact