Recently, we have reported that glycol chitosan (GCS) was able to reverse the P- glycoprotein (P-gp) efflux pump. The objective of the present study was to evaluate the potential of two GCS-based dosage forms (aqueous solution or nanoparticle suspension) for oral administration of the P-gp substrate Rho- 123. A further aim of the present study was to assess the effect of the glycol chitosan-4-thiobutylamidine thiomer (GCS-TBA) on P-gp activity considering that the corresponding thiomer of chitosan series is a well-known P-gp inhibitor. Pre-treatment of Caco-2 cell monolayer with a GCS solution or GCS-based nanoparticles increased the absorptive transport of Rho-123 across the monolayer of 1.43-fold. The mod- ification of GCS with 2-iminothiolane led to GCS-TBA conjugate which did not show any P-gp inhibitory activity. Therefore, GCS polymer and corresponding dosage forms may contribute to increase the oral bioavailability of Pgp-substrate drugs, while GCS-TBA cannot be used for the same purpose.

In vitro evaluation of glycol chitosan based formulations as oral delivery systems for efflux pump inhibition

Mandracchia, D.;Trapani, A.;Perrone, M. G.;Trapani, G.;
2017-01-01

Abstract

Recently, we have reported that glycol chitosan (GCS) was able to reverse the P- glycoprotein (P-gp) efflux pump. The objective of the present study was to evaluate the potential of two GCS-based dosage forms (aqueous solution or nanoparticle suspension) for oral administration of the P-gp substrate Rho- 123. A further aim of the present study was to assess the effect of the glycol chitosan-4-thiobutylamidine thiomer (GCS-TBA) on P-gp activity considering that the corresponding thiomer of chitosan series is a well-known P-gp inhibitor. Pre-treatment of Caco-2 cell monolayer with a GCS solution or GCS-based nanoparticles increased the absorptive transport of Rho-123 across the monolayer of 1.43-fold. The mod- ification of GCS with 2-iminothiolane led to GCS-TBA conjugate which did not show any P-gp inhibitory activity. Therefore, GCS polymer and corresponding dosage forms may contribute to increase the oral bioavailability of Pgp-substrate drugs, while GCS-TBA cannot be used for the same purpose.
File in questo prodotto:
File Dimensione Formato  
2017 Carbohydrate Polymer1.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 560.13 kB
Formato Adobe PDF
560.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Carbohydrate Polymers.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/181594
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact