Nonnegative matrix factorization (NMF) is an unsupervised learning method for decomposing high-dimensional nonnegative data matrices and extracting basic and intrinsic features. Since image data are described and stored as nonnegative matrices, the mining and analysis process usually involves the use of various NMF strategies. NMF methods have well-known applications in face recognition, image reconstruction, handwritten digit recognition, image denoising and feature extraction. Recently, several projective NMF (P-NMF) methods based on positively constrained projections have been proposed and were found to perform better than the standard NMF approach in some aspects. However, some drawbacks still affect the existing NMF and P-NMF algorithms; these include dense factors, slow convergence, learning poor local features, and low reconstruction accuracy. The aim of this paper is to design algorithms that address the aforementioned issues. In particular, we propose two embedded P-NMF algorithms: the first method combines the alternating least squares (ALS) algorithm with the P-NMF update rules of the Frobenius norm and the second one embeds ALS with the P-NMF update rule of the Kullback–Leibler divergence. To assess the performances of the proposed methods, we conducted various experiments on four well-known data sets of faces. The experimental results reveal that the proposed algorithms outperform other related methods by providing very sparse factors and extracting better localized features. In addition, the empirical studies show that the new methods provide highly orthogonal factors that possess small entropy values.
Robust embedded projective nonnegative matrix factorization for image analysis and feature extraction
BELACHEW, MELISEW TEFERA;DEL BUONO, Nicoletta
2016-01-01
Abstract
Nonnegative matrix factorization (NMF) is an unsupervised learning method for decomposing high-dimensional nonnegative data matrices and extracting basic and intrinsic features. Since image data are described and stored as nonnegative matrices, the mining and analysis process usually involves the use of various NMF strategies. NMF methods have well-known applications in face recognition, image reconstruction, handwritten digit recognition, image denoising and feature extraction. Recently, several projective NMF (P-NMF) methods based on positively constrained projections have been proposed and were found to perform better than the standard NMF approach in some aspects. However, some drawbacks still affect the existing NMF and P-NMF algorithms; these include dense factors, slow convergence, learning poor local features, and low reconstruction accuracy. The aim of this paper is to design algorithms that address the aforementioned issues. In particular, we propose two embedded P-NMF algorithms: the first method combines the alternating least squares (ALS) algorithm with the P-NMF update rules of the Frobenius norm and the second one embeds ALS with the P-NMF update rule of the Kullback–Leibler divergence. To assess the performances of the proposed methods, we conducted various experiments on four well-known data sets of faces. The experimental results reveal that the proposed algorithms outperform other related methods by providing very sparse factors and extracting better localized features. In addition, the empirical studies show that the new methods provide highly orthogonal factors that possess small entropy values.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.