The development of an efficient and accurate method for extra-virgin olive oils cultivar and origin authentication is complicated by the broad range of variables (e.g., multiplicity of varieties, pedo-climatic aspects, production and storage conditions) influencing their properties. In this study, artificial neural networks (ANNs) were applied on several analytical datasets, namely standard merceological parameters, near-infra red data and 1H nuclear magnetic resonance (NMR) fingerprints, obtained on mono-cultivar olive oils of four representative Apulian varieties (Coratina, Ogliarola, Cima di Mola, Peranzana). We analyzed 888 samples produced at a laboratory-scale during two crop years from 444 plants, whose variety was genetically ascertained, and on 17 industrially produced samples. ANN models based on NMR data showed the highest capability to classify cultivars (in some cases, accuracy > 99%), independently on the olive oil production process and year; hence, the NMR data resulted to be the most informative variables about the cultivars.
Cultivar classification of Apulian olive oils: Use of artificial neural networks for comparing NMR, NIR and merceological data
DEL COCO, LAURA;MONTEMURRO, CINZIA;SCHENA, Francesco Paolo
2017-01-01
Abstract
The development of an efficient and accurate method for extra-virgin olive oils cultivar and origin authentication is complicated by the broad range of variables (e.g., multiplicity of varieties, pedo-climatic aspects, production and storage conditions) influencing their properties. In this study, artificial neural networks (ANNs) were applied on several analytical datasets, namely standard merceological parameters, near-infra red data and 1H nuclear magnetic resonance (NMR) fingerprints, obtained on mono-cultivar olive oils of four representative Apulian varieties (Coratina, Ogliarola, Cima di Mola, Peranzana). We analyzed 888 samples produced at a laboratory-scale during two crop years from 444 plants, whose variety was genetically ascertained, and on 17 industrially produced samples. ANN models based on NMR data showed the highest capability to classify cultivars (in some cases, accuracy > 99%), independently on the olive oil production process and year; hence, the NMR data resulted to be the most informative variables about the cultivars.File | Dimensione | Formato | |
---|---|---|---|
Fanizzi et al 2016.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
523.92 kB
Formato
Adobe PDF
|
523.92 kB | Adobe PDF | Visualizza/Apri |
Fanizzi et al 2016.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
502.66 kB
Formato
Adobe PDF
|
502.66 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.