We consider the Cauchy problem for the semi-linear damped wave equation utt -Δu + b(t)ut = f (t, u), u(0, x) = uo (x), ut(0,x) = u1 (x). We prove the global existence of small data solution in low space dimension, and we derive (Lm∩ L2) - L2 decay estimates, for m ∈ [1, 2). We assume that the time-dependent damping term b(t) > 0 is effective, that is, the equation inherits some properties of the parabolic equation b(t)ut - Δu = f (t, u).

Small data solutions for semilinear wave equations with effective damping

D'ABBICCO, MARCELLO
2013-01-01

Abstract

We consider the Cauchy problem for the semi-linear damped wave equation utt -Δu + b(t)ut = f (t, u), u(0, x) = uo (x), ut(0,x) = u1 (x). We prove the global existence of small data solution in low space dimension, and we derive (Lm∩ L2) - L2 decay estimates, for m ∈ [1, 2). We assume that the time-dependent damping term b(t) > 0 is effective, that is, the equation inherits some properties of the parabolic equation b(t)ut - Δu = f (t, u).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/176742
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact