In this note, we prove the global existence of small data solutions for a semilinear wave equation with structural damping, utt - Δu + μ(-Δ)1/2 ut = |u|p, for any n ≥ 2 and p > 1 + 2/(n - 1). The damping term allows us to derive linear Lq1 - Lq2 estimates, for 1 ≤ q1 ≤ q2 ≤ ∞, without loss of regularity, in any space dimension. These estimates provide the basic tool to state our result, in which we assume initial data to be small in (L1 ∩ H1 ∩ L∞)×(L1 ∩ Ln).

A benefit from the L∞ smallness of initial data for the semilinear wave equation with structural damping

D'ABBICCO, MARCELLO
2015-01-01

Abstract

In this note, we prove the global existence of small data solutions for a semilinear wave equation with structural damping, utt - Δu + μ(-Δ)1/2 ut = |u|p, for any n ≥ 2 and p > 1 + 2/(n - 1). The damping term allows us to derive linear Lq1 - Lq2 estimates, for 1 ≤ q1 ≤ q2 ≤ ∞, without loss of regularity, in any space dimension. These estimates provide the basic tool to state our result, in which we assume initial data to be small in (L1 ∩ H1 ∩ L∞)×(L1 ∩ Ln).
2015
9783319125763
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/176728
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact