We study the Cauchy problem for the semilinear structural damped wave equation with source term utt-Δu+μ(-Δ)σut=f(u), u(0,x)=u0(x),ut(0,x)=u1(x),with σ∈(0,1] in space dimensionn≥2 and with a positive constant μ. We are interested in the influence of σ on the critical exponent pcrit in|f(u)|≈|u|p. This critical exponent is the threshold between global existence in time of small data solutions and blow-up behavior for some suitable range of p. Our results are optimal for σ=1/2. Copyright © 2013 John Wiley & Sons, Ltd.

Semilinear structural damped waves

D'ABBICCO, MARCELLO;
2014-01-01

Abstract

We study the Cauchy problem for the semilinear structural damped wave equation with source term utt-Δu+μ(-Δ)σut=f(u), u(0,x)=u0(x),ut(0,x)=u1(x),with σ∈(0,1] in space dimensionn≥2 and with a positive constant μ. We are interested in the influence of σ on the critical exponent pcrit in|f(u)|≈|u|p. This critical exponent is the threshold between global existence in time of small data solutions and blow-up behavior for some suitable range of p. Our results are optimal for σ=1/2. Copyright © 2013 John Wiley & Sons, Ltd.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/176720
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 113
  • ???jsp.display-item.citation.isi??? 107
social impact