Objective: We report synthesis of two carbon-11 labeled imidazopyridines TSPO ligands, [11C]CB184 and [11C]CB190, for PET imaging of inflammatory process along with neurodegeneration, ischemia or brain tumor. Biodistribution of these compounds was compared with that of [11C]CB148 and [11C](R)-PK11195. Methods: Both [11C]CB184 and [11C]CB190 having 11C-methoxyl group on an aromatic ring were readily prepared using [11C]methyl triflate. Biodistribution and metabolism of the compounds were examined with normal mice. An animal PET study using 6-hydroxydopamine treated rats as a model of neurodegeneration was pursued for proper estimation of feasibility of the radioligands to determine neuroinflammation process. Results: [11C]CB184 and [11C]CB190 were obtained via O-methylation of corresponding desmethyl precursor using [11C]methyl triflate in radiochemical yield of 73 % (decay-corrected). In vivo validation as a TSPO radioligand was carried out using normal mice and lesioned rats. In mice, [11C]CB184 showed more uptake and specific binding than [11C]CB190. Metabolism studies showed that 36 % and 25 % of radioactivity in plasma remained unchanged 30 min after intravenous injection of [11C]CB184 and [11C]CB190, respectively. In the PET study using rats, lesioned side of the brain showed significantly higher uptake than contralateral side after i.v. injection of either [11C]CB184 or [11C](R)-PK11195. Indirect Logan plot analysis revealed distribution volume ratio (DVR) between the two sides which might indicate lesion-related elevation of TSPO binding. The DVR was 1.15 ± 0.10 for [11C](R)-PK11195 and was 1.15 ± 0.09 for [11C]CB184. Conclusion: The sensitivity to detect neuroinflammation activity was similar for [11C]CB184 and [11C](R)-PK11195.

Radiosynthesis and in vivo evaluation of two imidazopyridineacetamides, [11C]CB184 and [11C]CB190, as a PET tracer for 18 kDa translocator protein: direct comparison with [11C](R)-PK11195

LAQUINTANA, VALENTINO;DENORA, NUNZIO;LATROFA, Andrea;TRAPANI, Giuseppe;LISO, Gaetano;
2015-01-01

Abstract

Objective: We report synthesis of two carbon-11 labeled imidazopyridines TSPO ligands, [11C]CB184 and [11C]CB190, for PET imaging of inflammatory process along with neurodegeneration, ischemia or brain tumor. Biodistribution of these compounds was compared with that of [11C]CB148 and [11C](R)-PK11195. Methods: Both [11C]CB184 and [11C]CB190 having 11C-methoxyl group on an aromatic ring were readily prepared using [11C]methyl triflate. Biodistribution and metabolism of the compounds were examined with normal mice. An animal PET study using 6-hydroxydopamine treated rats as a model of neurodegeneration was pursued for proper estimation of feasibility of the radioligands to determine neuroinflammation process. Results: [11C]CB184 and [11C]CB190 were obtained via O-methylation of corresponding desmethyl precursor using [11C]methyl triflate in radiochemical yield of 73 % (decay-corrected). In vivo validation as a TSPO radioligand was carried out using normal mice and lesioned rats. In mice, [11C]CB184 showed more uptake and specific binding than [11C]CB190. Metabolism studies showed that 36 % and 25 % of radioactivity in plasma remained unchanged 30 min after intravenous injection of [11C]CB184 and [11C]CB190, respectively. In the PET study using rats, lesioned side of the brain showed significantly higher uptake than contralateral side after i.v. injection of either [11C]CB184 or [11C](R)-PK11195. Indirect Logan plot analysis revealed distribution volume ratio (DVR) between the two sides which might indicate lesion-related elevation of TSPO binding. The DVR was 1.15 ± 0.10 for [11C](R)-PK11195 and was 1.15 ± 0.09 for [11C]CB184. Conclusion: The sensitivity to detect neuroinflammation activity was similar for [11C]CB184 and [11C](R)-PK11195.
File in questo prodotto:
File Dimensione Formato  
Hatano2015_Article_RadiosynthesisAndInVivoEvaluat.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 552.33 kB
Formato Adobe PDF
552.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/173435
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact