The determination of the acid-base dissociation constants, and thus the pKa values, of α-keto acids such as pyruvic acid is complex because of the existence of these acids in their hydrated and nonhydrated or oxo state. Equilibria involved in the hydration and dehydration of the α-keto group of pyruvic acid and three other α-keto acids, 3-methyl-2-oxobutanoic acid, 4-methyl-2-oxopentanoic acid, and 2-oxo-2-phenylacetic acid, were investigated by proton and carbon nuclear magnetic resonance spectrometry, at constant ionic strength, 0.15, and 25°C. Dissociation constants for the oxo (pKaoxo) and hydrated (pKahyd) acids of each compound were estimated from the change in the degree of hydration with changes in pH and directly from the changes in chemical shifts of various hydrogen and carbons nuclei with pH. α-Keto acids showed greater hydration in their acidic forms than their carboxylate forms. The degree of hydration was sensitive to steric and electronic/resonance factors. As expected, the oxo forms of the acids were stronger acids compared with their hydrated analogs, and their dissociation constants were also sensitive to steric and electronic factors.
Determination of pKa and Hydration Constants for a Series of α-Keto-Carboxylic Acids Using Nuclear Magnetic Resonance Spectrometry
LOPALCO, ANTONIO;DENORA, NUNZIO;
2016-01-01
Abstract
The determination of the acid-base dissociation constants, and thus the pKa values, of α-keto acids such as pyruvic acid is complex because of the existence of these acids in their hydrated and nonhydrated or oxo state. Equilibria involved in the hydration and dehydration of the α-keto group of pyruvic acid and three other α-keto acids, 3-methyl-2-oxobutanoic acid, 4-methyl-2-oxopentanoic acid, and 2-oxo-2-phenylacetic acid, were investigated by proton and carbon nuclear magnetic resonance spectrometry, at constant ionic strength, 0.15, and 25°C. Dissociation constants for the oxo (pKaoxo) and hydrated (pKahyd) acids of each compound were estimated from the change in the degree of hydration with changes in pH and directly from the changes in chemical shifts of various hydrogen and carbons nuclei with pH. α-Keto acids showed greater hydration in their acidic forms than their carboxylate forms. The degree of hydration was sensitive to steric and electronic/resonance factors. As expected, the oxo forms of the acids were stronger acids compared with their hydrated analogs, and their dissociation constants were also sensitive to steric and electronic factors.File | Dimensione | Formato | |
---|---|---|---|
Lopalco_et_al-2015-Journal_of_Pharmaceutical_Sciences.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
920.52 kB
Formato
Adobe PDF
|
920.52 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.