In this paper, we introduce a constructive rigorous numerical method to compute smooth manifolds implicitly defined by infinite-dimensional nonlinear operators. We compute a simplicial triangulation of the manifold using a multi-parameter continuation method on a finite-dimensional projection. The triangulation is then used to construct local charts and an atlas of the manifold in the infinite-dimensional domain of the operator. The idea behind the construction of the smooth charts is to use the radii polynomial approach to verify the hypotheses of the uniform contraction principle over a simplex. The construction of the manifold is globalized by proving smoothness along the edge of adjacent simplices. We apply the method to compute portions of a two-dimensional manifold of equilibria of the Cahn–Hilliard equation.

Computation of Smooth Manifolds Via Rigorous Multi-parameter Continuation in Infinite Dimensions

PUGLIESE, Alessandro
2016-01-01

Abstract

In this paper, we introduce a constructive rigorous numerical method to compute smooth manifolds implicitly defined by infinite-dimensional nonlinear operators. We compute a simplicial triangulation of the manifold using a multi-parameter continuation method on a finite-dimensional projection. The triangulation is then used to construct local charts and an atlas of the manifold in the infinite-dimensional domain of the operator. The idea behind the construction of the smooth charts is to use the radii polynomial approach to verify the hypotheses of the uniform contraction principle over a simplex. The construction of the manifold is globalized by proving smoothness along the edge of adjacent simplices. We apply the method to compute portions of a two-dimensional manifold of equilibria of the Cahn–Hilliard equation.
File in questo prodotto:
File Dimensione Formato  
EDITORIALE_FoCM-2015.pdf

non disponibili

Descrizione: Articolo
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.81 MB
Formato Adobe PDF
4.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
IRIS_galepu_rev1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/171074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact