When a cone is added to a simplicial complex Δ over one of its faces, we investigate the relation between the arithmetical ranks of the Stanley–Reisner ideals of the original simplicial complex and the new simplicial complex Δ′. In particular, we show that the arithmetical rank of the Stanley–Reisner ideal of Δ′ equals the projective dimension of the Stanley–Reisner ring of Δ′ if the corresponding equality holds for Δ.

Arithmetical ranks of Stanley-Reisner ideals of simplicial complexes with a cone

BARILE, Margherita
;
2010

Abstract

When a cone is added to a simplicial complex Δ over one of its faces, we investigate the relation between the arithmetical ranks of the Stanley–Reisner ideals of the original simplicial complex and the new simplicial complex Δ′. In particular, we show that the arithmetical rank of the Stanley–Reisner ideal of Δ′ equals the projective dimension of the Stanley–Reisner ring of Δ′ if the corresponding equality holds for Δ.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11586/16101
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact