In recent years, several studies have focused on the growth conditions of the diamonds through the analysis of the mineral inclusions trapped in them. In these studies, it is crucial to distinguish between protogenetic, syngenetic and epigenetic inclusions. X-ray topography (XRDT) can be a helpful tool to verify, in a nondestructive way, the genetic nature of inclusions in diamond. With this aim, a diamond from the Udachnaya kimberlite, Siberia, was investigated. The diamond, previously studied by Nestola et al. (2011), has anomalous birefringence and the two largest olivines have typical “diamond-imposed” shapes. The study of the topographic images shows that the diamond exhibits significant deformation fields related to post growth plastic deformation. The absence of dislocations starting from the olivine inclusions, and the dark contrasts around them represent the main results obtained by XRDT, contributing to the elucidation of the relationships between the diamond and the olivines at the micron-meter scale. The dark halo surrounding the inclusions was likely caused by the effect of different thermo-elastic properties between the diamond and the inclusions. The absence of dislocations indicates that the diamond-imposed morphology did not produce the volume distortion commonly associated with the entrapment of the full-grown inclusions and, thus, only based on such evidence, a syngenetic origin could be proposed. In addition, stepped figures optically observed at the interface between diamond and one of the olivines suggest processes of selective partial dissolution that would contribute to a change in the final morphology of inclusions. These results show that a diamond morphology may be imposed to a full-grown (protogenetic) olivine during their encapsulation, suggesting that the bulk of the inclusion is protogenetic, whereas its more external regions, close to the diamond-inclusion interface, could be syngenetic.

X-ray topographic study of a diamond from Udachnaya: Implications for the genetic nature of inclusions

AGROSI', Giovanna;TEMPESTA, GIOACCHINO;SCANDALE, Eugenio;
2016-01-01

Abstract

In recent years, several studies have focused on the growth conditions of the diamonds through the analysis of the mineral inclusions trapped in them. In these studies, it is crucial to distinguish between protogenetic, syngenetic and epigenetic inclusions. X-ray topography (XRDT) can be a helpful tool to verify, in a nondestructive way, the genetic nature of inclusions in diamond. With this aim, a diamond from the Udachnaya kimberlite, Siberia, was investigated. The diamond, previously studied by Nestola et al. (2011), has anomalous birefringence and the two largest olivines have typical “diamond-imposed” shapes. The study of the topographic images shows that the diamond exhibits significant deformation fields related to post growth plastic deformation. The absence of dislocations starting from the olivine inclusions, and the dark contrasts around them represent the main results obtained by XRDT, contributing to the elucidation of the relationships between the diamond and the olivines at the micron-meter scale. The dark halo surrounding the inclusions was likely caused by the effect of different thermo-elastic properties between the diamond and the inclusions. The absence of dislocations indicates that the diamond-imposed morphology did not produce the volume distortion commonly associated with the entrapment of the full-grown inclusions and, thus, only based on such evidence, a syngenetic origin could be proposed. In addition, stepped figures optically observed at the interface between diamond and one of the olivines suggest processes of selective partial dissolution that would contribute to a change in the final morphology of inclusions. These results show that a diamond morphology may be imposed to a full-grown (protogenetic) olivine during their encapsulation, suggesting that the bulk of the inclusion is protogenetic, whereas its more external regions, close to the diamond-inclusion interface, could be syngenetic.
File in questo prodotto:
File Dimensione Formato  
Lithos 2016.pdf

non disponibili

Descrizione: articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
LITHOS5197R1GA.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 337.58 kB
Formato Adobe PDF
337.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/156557
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact