Soil management techniques can definitely influence soil quality, and particularly soil organic matter content, biological complexity, structure, and water holding capacity. Tillage may also have a negative effect by increasing erosion and organic matter oxidation processes, which have unavoidable repercussions on fertility. The objective of the current research was to test the effects of five different management techniques applied for 35 years on a rain-fed almond grove (Prunus amygdalus Batsch) in a hot-dry environment on some physicochemical, hydrological, and biological parameters. The following soil management techniques were compared: no-till (NT), with weed control by preemergence herbicides; NT, with chemical weed control by foliar herbicides; NT, with weed control by mowing; tillage, with sowing and field bean green manuring; and conventional tillage. The current survey supplied interesting results, considering the typical soil and climate conditions of the tested area (southern Italy), characterized by high summer temperatures, low rainfall, clay loam soil, and an arable layer of 0.40 m. The most influenced values are those concerning the organic matter due to the supply of biomass resulting from weed mowing or field bean green manuring. The NT system with a single mowing in the spring seems to induce a higher water holding capacity (–15,000 hPa) as compared with the traditionally plowed soil. The biomass incorporation through field bean green manure resulted in a higher available water content (11.82%). All practices favoring an increase in organic matter induced a subsequent increase of microbial biomass content. The number of existing families and species of weed flora was largely influenced by different soil management techniques, as shown by the greater adaptation of grasses to the management practices involving weed control by foliar herbicide or mowing, and of several species associated with the technique involving the application of preemergence herbicides. In general, the almond orchard management involving minimum soil disturbance and the supply of biomass resulting from specially sown cover crops or weed development have shown substantial benefits to the physicochemical, hydrologic, and biologic soil properties.

oil management techniques can definitely influence soil quality, and particularly soil organic matter content, biological complexity, structure, and water holding capacity. Tillage may also have a negative effect by increasing erosion and organic matter oxidation processes, which have unavoidable repercussions on fertility. The objective of the current research was to test the effects of five different management techniques applied for 35 years on a rain-fed almond grove (Prunus amygdalus Batsch) in a hot-dry environment on some physicochemical, hydrological, and biological parameters. The following soil management techniques were compared: no-till (NT), with weed control by preemergence herbicides; NT, with chemical weed control by foliar herbicides; NT, with weed control by mowing; tillage, with sowing and field bean green manuring; and conventional tillage. The current survey supplied interesting results, considering the typical soil and climate conditions of the tested area (southern Italy), characterized by high summer temperatures, low rainfall, clay loam soil, and an arable layer of 0.40 m. The most influenced values are those concerning the organic matter due to the supply of biomass resulting from weed mowing or field bean green manuring. The NT system with a single mowing in the spring seems to induce a higher water holding capacity (–15,000 hPa) as compared with the traditionally plowed soil. The biomass incorporation through field bean green manure resulted in a higher available water content (11.82%). All practices favoring an increase in organic matter induced a subsequent increase of microbial biomass content. The number of existing families and species of weed flora was largely influenced by different soil management techniques, as shown by the greater adaptation of grasses to the management practices involving weed control by foliar herbicide or mowing, and of several species associated with the technique involving the application of preemergence herbicides. In general, the almond orchard management involving minimum soil disturbance and the supply of biomass resulting from specially sown cover crops or weed development have shown substantial benefits to the physicochemical, hydrologic, and biologic soil properties.

Impact of long term soil management practices on the fertility and weed flora of an almond orchard

CUCCI, Giovanna;LACOLLA, GIOVANNI;CRECCHIO, Carmine;PASCAZIO, SILVIA;
2016-01-01

Abstract

Soil management techniques can definitely influence soil quality, and particularly soil organic matter content, biological complexity, structure, and water holding capacity. Tillage may also have a negative effect by increasing erosion and organic matter oxidation processes, which have unavoidable repercussions on fertility. The objective of the current research was to test the effects of five different management techniques applied for 35 years on a rain-fed almond grove (Prunus amygdalus Batsch) in a hot-dry environment on some physicochemical, hydrological, and biological parameters. The following soil management techniques were compared: no-till (NT), with weed control by preemergence herbicides; NT, with chemical weed control by foliar herbicides; NT, with weed control by mowing; tillage, with sowing and field bean green manuring; and conventional tillage. The current survey supplied interesting results, considering the typical soil and climate conditions of the tested area (southern Italy), characterized by high summer temperatures, low rainfall, clay loam soil, and an arable layer of 0.40 m. The most influenced values are those concerning the organic matter due to the supply of biomass resulting from weed mowing or field bean green manuring. The NT system with a single mowing in the spring seems to induce a higher water holding capacity (–15,000 hPa) as compared with the traditionally plowed soil. The biomass incorporation through field bean green manure resulted in a higher available water content (11.82%). All practices favoring an increase in organic matter induced a subsequent increase of microbial biomass content. The number of existing families and species of weed flora was largely influenced by different soil management techniques, as shown by the greater adaptation of grasses to the management practices involving weed control by foliar herbicide or mowing, and of several species associated with the technique involving the application of preemergence herbicides. In general, the almond orchard management involving minimum soil disturbance and the supply of biomass resulting from specially sown cover crops or weed development have shown substantial benefits to the physicochemical, hydrologic, and biologic soil properties.
2016
oil management techniques can definitely influence soil quality, and particularly soil organic matter content, biological complexity, structure, and water holding capacity. Tillage may also have a negative effect by increasing erosion and organic matter oxidation processes, which have unavoidable repercussions on fertility. The objective of the current research was to test the effects of five different management techniques applied for 35 years on a rain-fed almond grove (Prunus amygdalus Batsch) in a hot-dry environment on some physicochemical, hydrological, and biological parameters. The following soil management techniques were compared: no-till (NT), with weed control by preemergence herbicides; NT, with chemical weed control by foliar herbicides; NT, with weed control by mowing; tillage, with sowing and field bean green manuring; and conventional tillage. The current survey supplied interesting results, considering the typical soil and climate conditions of the tested area (southern Italy), characterized by high summer temperatures, low rainfall, clay loam soil, and an arable layer of 0.40 m. The most influenced values are those concerning the organic matter due to the supply of biomass resulting from weed mowing or field bean green manuring. The NT system with a single mowing in the spring seems to induce a higher water holding capacity (–15,000 hPa) as compared with the traditionally plowed soil. The biomass incorporation through field bean green manure resulted in a higher available water content (11.82%). All practices favoring an increase in organic matter induced a subsequent increase of microbial biomass content. The number of existing families and species of weed flora was largely influenced by different soil management techniques, as shown by the greater adaptation of grasses to the management practices involving weed control by foliar herbicide or mowing, and of several species associated with the technique involving the application of preemergence herbicides. In general, the almond orchard management involving minimum soil disturbance and the supply of biomass resulting from specially sown cover crops or weed development have shown substantial benefits to the physicochemical, hydrologic, and biologic soil properties.
File in questo prodotto:
File Dimensione Formato  
tar-40-2-8-1502-87.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 610.11 kB
Formato Adobe PDF
610.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/156356
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact