We put forward and analyze an explicit finite difference scheme for the Camassa-Holm shallow water equation that can handle general H 1 initial data and thus peakon-antipeakon interactions. As- suming a specified condition restricting the time step in terms of the spatial discretization parameter, we prove that the difference scheme converges strongly in H^1 towards a dissipative weak solution of the Camassa-Holm equation.

An explicit finite difference scheme for the Camassa-Holm equation

COCLITE, Giuseppe Maria;
2008-01-01

Abstract

We put forward and analyze an explicit finite difference scheme for the Camassa-Holm shallow water equation that can handle general H 1 initial data and thus peakon-antipeakon interactions. As- suming a specified condition restricting the time step in terms of the spatial discretization parameter, we prove that the difference scheme converges strongly in H^1 towards a dissipative weak solution of the Camassa-Holm equation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/15059
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact