The numerous concepts of socio-economic hardship are, furthermore, attributable to a traditional distinction between absolute and relative conditions of hardship. The options of scientific research were therefore oriented towards the establishment of a multi-dimensional approach, sometimes abandoning dichotomous logic in order to arrive at fuzzy classifications in which each unit belongs and, at the same time, does not belong, to a category. A multidimensional index that considers hardship as the overall condition of being disadvantaged and deprived seems the most appropriate in view of the socio-economic differential analysis of demographic phenomena. The approach used in this work to synthesise and measure the conditions of the hardship of a population is based on a clustering procedure (fuzzy c-means) aimed at outlining various not defined a priori profiles, which should be assigned to each family with different socio-economic behaviours. In comparison with conventional methods, this clustering method allows a set of data to belong not only to a main cluster but also to two or more clusters with ‘fuzzy profiles’.

The identification of ‘fuzzy profiles’ through the c-means clustering

MONTRONE, Silvestro;PERCHINUNNO, Paola
2015-01-01

Abstract

The numerous concepts of socio-economic hardship are, furthermore, attributable to a traditional distinction between absolute and relative conditions of hardship. The options of scientific research were therefore oriented towards the establishment of a multi-dimensional approach, sometimes abandoning dichotomous logic in order to arrive at fuzzy classifications in which each unit belongs and, at the same time, does not belong, to a category. A multidimensional index that considers hardship as the overall condition of being disadvantaged and deprived seems the most appropriate in view of the socio-economic differential analysis of demographic phenomena. The approach used in this work to synthesise and measure the conditions of the hardship of a population is based on a clustering procedure (fuzzy c-means) aimed at outlining various not defined a priori profiles, which should be assigned to each family with different socio-economic behaviours. In comparison with conventional methods, this clustering method allows a set of data to belong not only to a main cluster but also to two or more clusters with ‘fuzzy profiles’.
File in questo prodotto:
File Dimensione Formato  
IJBIDM 2015 perchinunno montrone preprint.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 629.99 kB
Formato Adobe PDF
629.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/149138
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact