A high-yield synthesis of pure anatase titania nanorods has been achieved through a nonaqueous microwave-based approach. The residual organics on nanoparticles surfaces were completely removed under ozone flow at room temperature in air. The TiO2 nanorods, with average lengths of 27.6 ± 5.8 nm and average diameters of 3.2 ± 0.4 nm, were characterized by powder X-Ray diffraction, transmission electron microscopy, selected area diffraction, BET surface area analysis and FT-IR spectroscopy. The photocatalytic performances of the as-synthesized TiO2 nanorods and platinum loaded TiO2 nanorods were implemented with respect to both commercial P25 and platinum loaded P25. Performance enhancements should be attributed to effects like differences in the adsorption capacity and in the separation efficiency of the photogenerated electrons-holes.

Efficient, Green Non-aqueous Microwave-assisted Synthesis of Anatase TiO2 and Pt Loaded TiO2 Nanorods with High Photocatalytic Performance

CARLUCCI, CLAUDIA;
2015-01-01

Abstract

A high-yield synthesis of pure anatase titania nanorods has been achieved through a nonaqueous microwave-based approach. The residual organics on nanoparticles surfaces were completely removed under ozone flow at room temperature in air. The TiO2 nanorods, with average lengths of 27.6 ± 5.8 nm and average diameters of 3.2 ± 0.4 nm, were characterized by powder X-Ray diffraction, transmission electron microscopy, selected area diffraction, BET surface area analysis and FT-IR spectroscopy. The photocatalytic performances of the as-synthesized TiO2 nanorods and platinum loaded TiO2 nanorods were implemented with respect to both commercial P25 and platinum loaded P25. Performance enhancements should be attributed to effects like differences in the adsorption capacity and in the separation efficiency of the photogenerated electrons-holes.
File in questo prodotto:
File Dimensione Formato  
NanomatNanotech_Filippo2015.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.79 MB
Formato Adobe PDF
4.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/148075
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact