One main issue, when numerically integrating autonomous Hamiltonian systems, is the long-term conservation of some of its invariants; among them the Hamiltonian function itself. For example, it is well known that classical symplectic methods can only exactly preserve, at most, quadratic Hamiltonians. In this paper, we report the theoretical foundations which have led to the definition of the new family of methods, called Hamiltonian Boundary Value Methods (HBVMs). HBVMs are able to exactly preserve, in the discrete solution, Hamiltonian functions of polynomial type of arbitrarily high degree. These methods turn out to be symmetric and can have arbitrarily high order. A few numerical tests confirm the theoretical results.

Reprint of Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems

IAVERNARO, Felice;
2015-01-01

Abstract

One main issue, when numerically integrating autonomous Hamiltonian systems, is the long-term conservation of some of its invariants; among them the Hamiltonian function itself. For example, it is well known that classical symplectic methods can only exactly preserve, at most, quadratic Hamiltonians. In this paper, we report the theoretical foundations which have led to the definition of the new family of methods, called Hamiltonian Boundary Value Methods (HBVMs). HBVMs are able to exactly preserve, in the discrete solution, Hamiltonian functions of polynomial type of arbitrarily high degree. These methods turn out to be symmetric and can have arbitrarily high order. A few numerical tests confirm the theoretical results.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/147437
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact