Cell surface chondroitin sulfate proteoglycan 4 (CSPG4) is an attractive target for antibody-based cancer immunotherapy because of its role in tumor cell biology, its high expression on malignant cells including cancer-initiating cells, and its restricted distribution in normal tissues. The clinical use of CSPG4 has been hampered by the lack of a CSPG4-specific chimeric, humanized, or fully human monoclonal antibody. To overcome this limitation, we generated a CSPG4-specific fully human single-chain antibody termed scFv-FcC21 and characterized its specificity and antitumor activity. Viable CSPG4+ melanoma cells were used in a screen of a human scFv phage display library that included CDR3 engineered to optimize antibody binding sites. The scFv antibody isolated was then recombinantly engineered with a human immunoglobulin G1 Fc region to construct the fully human antibody scFv-FcC21, which recognized tumors of neuroectodermal origin, various types of carcinomas, mesotheliomas, and sarcomas as well as myeloid leukemias. scFv-FcC21 inhibited in vitro growth and migration of tumor cells and in vivo growth of human tumor xenografts. These effects were mediated by inhibition of the activation of extracellular signal-regulated kinase and focal adhesion kinase signaling pathways that are critical for tumor cell growth and migration, respectively. Our findings define the CSPG4-specific fully human scFv-FcC21 antibody as a candidate therapeutic agent to target the many types of tumors that express CSPG4

Functional characterization of an scFv-Fc antibody that immunotherapeutically targets the common cancer cell surface proteoglycan CSPG4

FAVOINO, ELVIRA;
2011-01-01

Abstract

Cell surface chondroitin sulfate proteoglycan 4 (CSPG4) is an attractive target for antibody-based cancer immunotherapy because of its role in tumor cell biology, its high expression on malignant cells including cancer-initiating cells, and its restricted distribution in normal tissues. The clinical use of CSPG4 has been hampered by the lack of a CSPG4-specific chimeric, humanized, or fully human monoclonal antibody. To overcome this limitation, we generated a CSPG4-specific fully human single-chain antibody termed scFv-FcC21 and characterized its specificity and antitumor activity. Viable CSPG4+ melanoma cells were used in a screen of a human scFv phage display library that included CDR3 engineered to optimize antibody binding sites. The scFv antibody isolated was then recombinantly engineered with a human immunoglobulin G1 Fc region to construct the fully human antibody scFv-FcC21, which recognized tumors of neuroectodermal origin, various types of carcinomas, mesotheliomas, and sarcomas as well as myeloid leukemias. scFv-FcC21 inhibited in vitro growth and migration of tumor cells and in vivo growth of human tumor xenografts. These effects were mediated by inhibition of the activation of extracellular signal-regulated kinase and focal adhesion kinase signaling pathways that are critical for tumor cell growth and migration, respectively. Our findings define the CSPG4-specific fully human scFv-FcC21 antibody as a candidate therapeutic agent to target the many types of tumors that express CSPG4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/147357
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 53
social impact