We generalize the Beckner’s type Poincaré inequality (Beckner, W. Proc. Amer. Math. Soc. (1989) 105:397–400) to a large class of probability measures on an abstract Wiener space of the form μ⋆ν, where μ is the reference Gaussian measure and ν is a probability measure satisfying a certain integrability condition. As the Beckner inequality interpolates between the Poincaré and logarithmic Sobolev inequalities, we utilize a family of products for functions which interpolates between the usual point-wise multiplication and the Wick product. Our approach is based on the positivity of a quadratic form involving Wick powers and integration with respect to those convolution measures. In addition, we prove that in the finite-dimensional case the class of densities of convolutions measures satisfies a point-wise covariance inequality.

An extension of the Beckner’s type Poincaré inequality to convolution measures on abstract Wiener spaces

DA PELO, PAOLO;LANCONELLI, ALBERTO;
2016-01-01

Abstract

We generalize the Beckner’s type Poincaré inequality (Beckner, W. Proc. Amer. Math. Soc. (1989) 105:397–400) to a large class of probability measures on an abstract Wiener space of the form μ⋆ν, where μ is the reference Gaussian measure and ν is a probability measure satisfying a certain integrability condition. As the Beckner inequality interpolates between the Poincaré and logarithmic Sobolev inequalities, we utilize a family of products for functions which interpolates between the usual point-wise multiplication and the Wick product. Our approach is based on the positivity of a quadratic form involving Wick powers and integration with respect to those convolution measures. In addition, we prove that in the finite-dimensional case the class of densities of convolutions measures satisfies a point-wise covariance inequality.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11586/146594
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact